

Costs and Benefits of On-Farm Water Storage Systems

PIs: Mary Love Tagert, Joel O. Paz, and Brian Williams Graduate Students: Ritesh Karki (M.S.), Domena Agyeman (M.S.), and Juan D. Pérez-Gutiérrez (Ph.D.)

Mississippi State Extension Service Department of Agricultural and Biological Engineering Department of Agricultural Economics

MISSISSIPPI STATE UNIVERSITY

Overview

- Background
- On-Farm Water Storage (OFWS) Systems
- Part A: Benefits Objectives, Methods, Results
- Part B: OFWS Systems as a Tool to Reduce Risk – Objectives, Methods, Results
- Conclusions

MISSISSIPPI STATE UNIVERSITY EXTENSION

Background

- 1. Degradation of water quality:
 - Nitrogen, phosphorus and sediment are the major causes of impairment in Mississippi surface waters.
 - Elevated levels of nutrients can lead to eutrophication.
 - Development of hypoxic zones, loss of amenities provided by surface water.
- 2. Irrigation needs:
 - Mississippi receives an average 56 (1,422 mm) inches rainfall annually, but 70% of total precipitation is during the winter and spring months.
 - Less rainfall during the growing season; periodic drought
 - East Mississippi mostly Dryland Production, high cost of drilling wells due to depth to reach water.

MISSISSIPPI STATE UNIVERSITY MEXTENSION

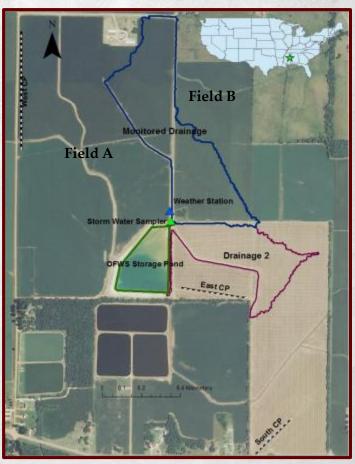
On-Farm Water Storage (OFWS) System

An OFWS system is an agricultural BMP consisting of a tailwater recovery ditch and/or storage pond with the goals of reducing downstream nutrient loads and providing water for irrigation.

General designs of OFWS Systems: East Mississippi (left) Mississippi Delta (right).

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Part A, Benefits: Objectives


- 1. Evaluate OFWS systems for downstream sediment and nutrient loading control.
- 2. Quantify surface water provided by the OFWS system for irrigation.
- 3. Determine if commercial fertilizer application can be reduced because of the nutrient load in recycled water used for irrigation.
- 4. Evaluate alternative management practices to reduce nutrient and sediment loading.

MISSISSIPPI STATE UNIVERSITY

Site Description

- Located 22 miles southeast of Starkville in Noxubee County in the AL and MS Blackland Prairie.
- In the Middle Tombigbee-Lubbub Watershed.
- Major crops: Corn and soybean.
- Annual precipitation in the region: 54 inches (1,372 mm).
- Fall fertilizer application.
- Conventional tillage.
- An OFWS system constructed in 2012.
- OFWS system storage pond: 17 surface acres (6.8 hectares), 25 ft (7.6m) deep at deepest point.

OFWS system in East Mississippi.

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Site Description

- Drainage area: 111 acres (45 hectares).
 - Portions of three fields drain to the pond.
 - Two sub-watersheds.
 - Only northern most watershed monitored for this study.
- Pond feeds 3 center pivot irrigation systems and irrigates approx. 339 acres (137.2 hectares).

OFWS system in East Mississippi.

MISSISSIPPI STATE UNIVERSITY EXTENSION

Methods: Monitoring System

A. Storm runoff samples:

- Collected using ISCO 6712 automated portable sampler.
- Installed at the outlet of the monitored sub-watershed.
- Sample collection: event based on uniform time spacing.
- Triggered when a runoff depth of 7.62 mm was measured in the drainage channel.
- Analyzed for soluble and particulate forms of N and P, and sediment.
- Runoff depth and flow was monitored: 750 Area Velocity Flow Module attached to the sampler.
- **B.** Grab samples from the OFWS system storage pond:
- Collected every 21 days.
- Also analyzed for soluble and particulate forms of N and P, and sediment.
- In-situ measurements for pH, DO, and conductivity were also taken.

ISCO 6712 portable sampler for collecting runoff samples.

OFWS system storage pond.

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Methods: Monitoring System

C. Grab samples from the irrigation system:

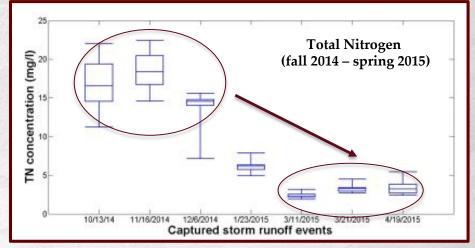
- Grab samples were collected from the west center pivot during irrigation events and analyzed for soluble and particulate N and P.
- Nutrient levels in the irrigation sample were compared to samples taken from the OFWS storage pond on the same day.
- D. Weather Data (Watchdog 2900 ET):
- Precipitation, wind speed, air temperature, relative humidity, and solar radiation every 15 minutes.
- E. Water Use Data:
- IM3000 magnetic flowmeters on all three center pivots.

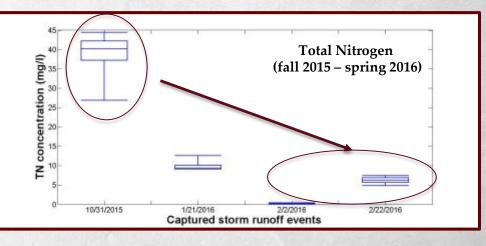
Center pivot irrigation system in the study site.

Watchdog 2900 ET weather station.

IM3000 magnetic Flowmeter.

MISSISSIPPI STATE UNIVERSITY MEXTENSION

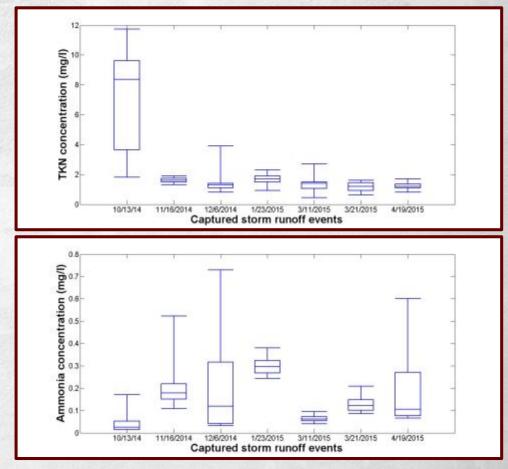

Results from Storm Runoff Samples



MISSISSIPPI STATE UNIVERSITY MEXTENSION

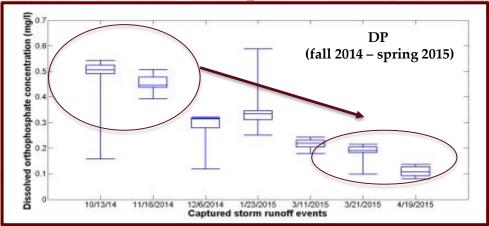
Results: Total Nitrogen

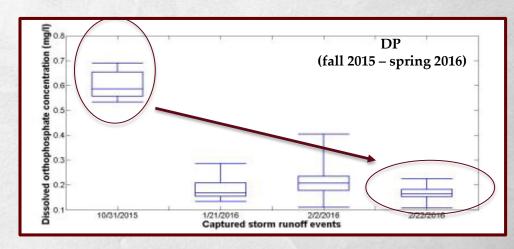
- Site was monitored for 22 months (6/2014 – 3/2016).
- Most runoff events in the winter and spring season.
- Highest nitrogen concentrations: Fall runoff events.
- Lowest nitrogen concentrations: Late spring runoff events.
- Fall application of poultry fertilizer.
- Trend of decreasing nitrogen concentration from fall to spring.



MISSISSIPPI STATE UNIVERSITY MEXTENSION

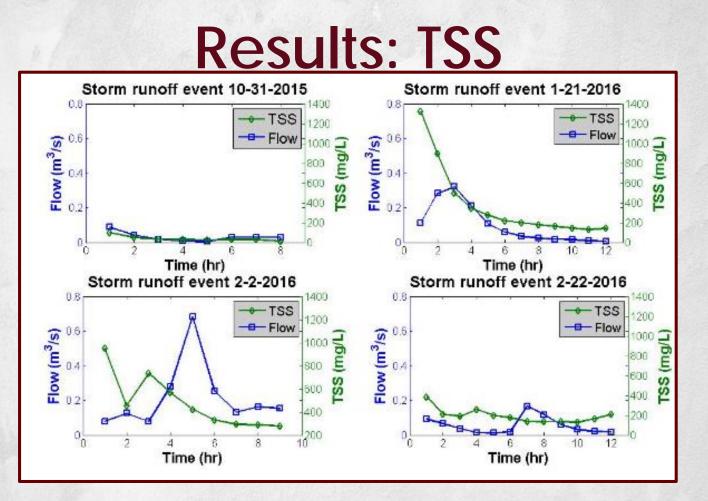
Results: TKN and Ammonia


- TKN concentration in the first runoff event was significantly higher than in the remaining storm events captured.
- Fall application of poultry litter fertilizer is likely the reason for high TKN concentrations in fall.
- Ammonia concentration in the same runoff captured was much lower.
- Organic nitrogen was the major constituent of TKN rather than ammonia.
- In Fall 2015 spring 2016, TKN concentration in the first runoff event was much lower than in fall 2014 – spring 2015, and TKN concentrations stayed around 2 mg/L during the second year of the study



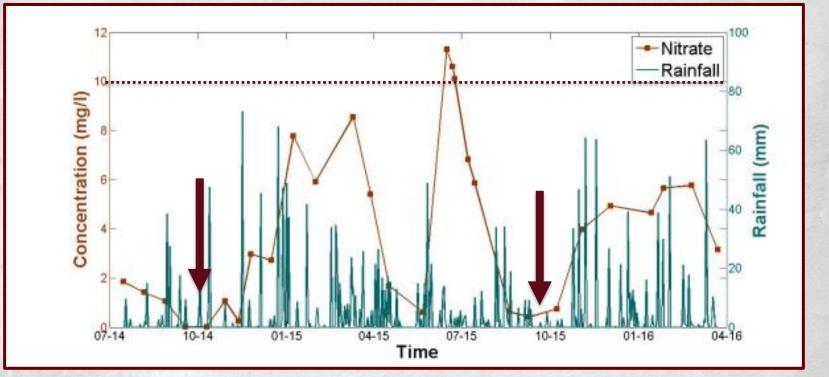
Results: Dissolved Phosphorus

- Highest DP concentrations: Fall runoff events.
- Lowest DP concentrations: Late spring runoff events.
- Relatively small range of difference between high and low concentrations
- Poultry litter fertilizer application could be the reason for higher DP concentrations in early fall runoff events.



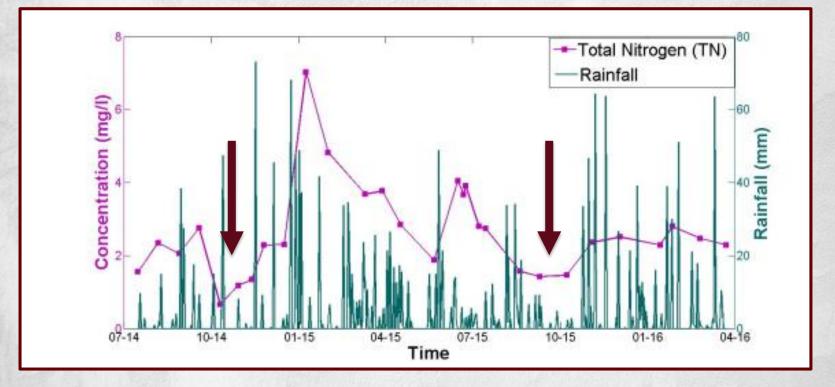
MISSISSIPPI STATE UNIVERSITY MEXTENSION

- Higher TSS concentrations in storm runoff events with the higher flow rates.
- Higher flow rate events also had higher measured TP concentration.



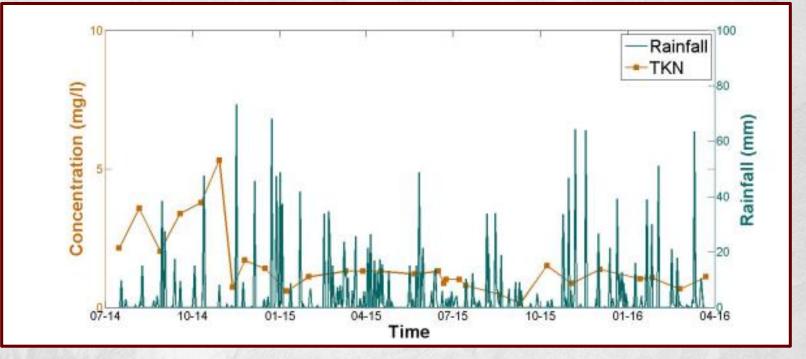
Results from Storage Pond Grab Samples

MISSISSIPPI STATE UNIVERSITY MEXTENSION


Results: Nitrate

- Nitrate concentrations were considerably lower than in the storm runoff events captured.
- Lowest concentrations were measured in the fall of each year prior to fall fertilizer application and major rainfall events.
- **Concentration increased after the fall runoff events**, and started decreasing in the spring in both years of study.

Results: Total Nitrogen

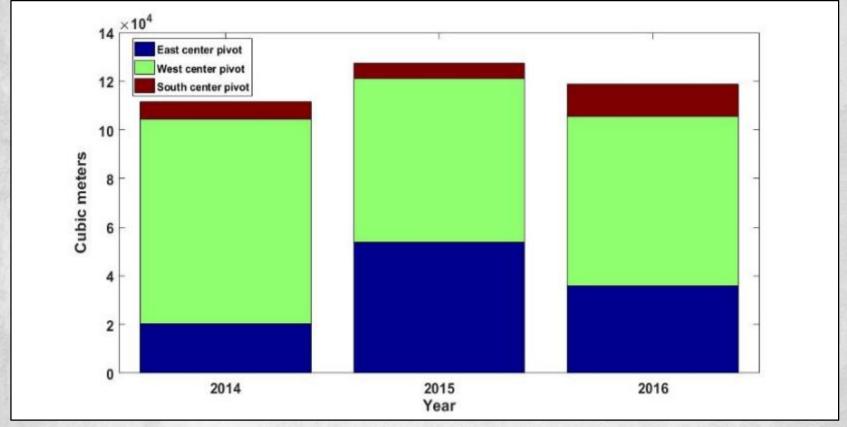


- TN followed a similar trend to nitrate.
- Lowest concentrations were measured in the fall of both years of study.
- Concentration in the pond was lower than in the storm runoff events.

■ MISSISSIPPI STATE UNIVERSITY EXTENSION

Results: TKN

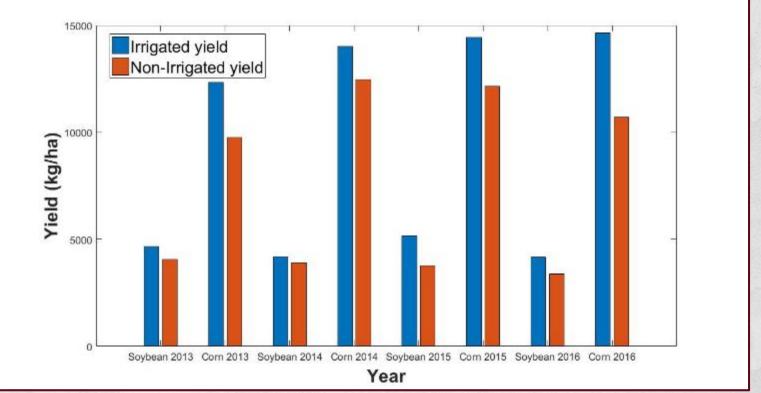
- Highest TKN concentration measured was 5.31 mg/L on October 9, 2014 which coincided with the first runoff event after poultry fertilizer application.
- Unlike 2014, TKN concentration did not increase after poultry litter application and runoff events in fall 2015.


Results: DP and TP

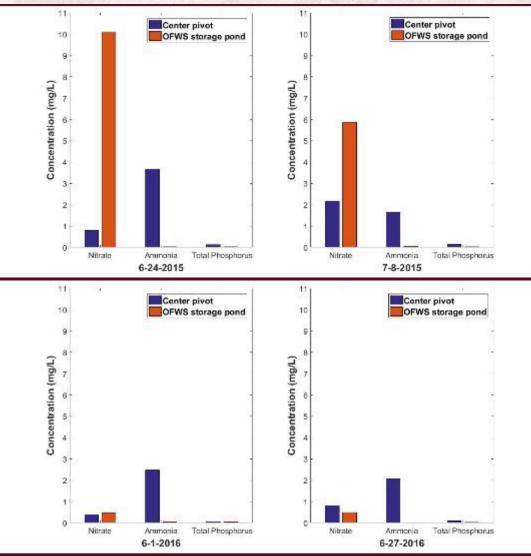
- DP concentration was **below the detection limit of 0.05 mg/L** in 24 of the 29 samples collected and analyzed throughout the study period.
- TP was below the detection limit in most samples during the growing season in both years of study, but detectable in most samples (up to 0.425 mg/L) during the nongrowing season for both years of study.
- DP and TP concentrations in the storage pond were lower than the concentrations recorded in the storm runoff samples.

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Results: Irrigation



- 29.4 million gallons (90.8 ac-ft), 33.6 million gallons (103.4 ac-ft), and 31.4 million gallons (96.5 ac-ft) for irrigation in 2014, 2015, and 2016, respectively.
- Irrigated 339 acres each year.


Results: Yield

- Irrigated corn yield was higher by an average of **39**, **23**, **34**, **and 59 bushels per acre**, in 2013, 2014, 2015, and 2016, respectively.
- Irrigated soybean yield was higher by an average of **9**, **5**, **and 21**, **and 12 bushels per acre** in 2013, 2014, 2015, and 2016, respectively.

Results: Nutrient Recycling

STATE

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Conclusions from Monitoring

- Nutrient and sediment concentrations in storm runoff samples were considerably higher than in grab samples collected from the storage pond, demonstrating how OFWS systems can be effective in controlling downstream nutrient and sediment loading.
- Even if water is lost downstream through the pond's overflow pipe when the pond is at maximum capacity, **nutrient concentrations are considerably lower in the pond than in storm runoff events**.
- These systems can be an effective irrigation source 63 million gallons of water for irrigation in 2014 and 2015.
- **Higher yields were obtained for irrigated acres for both soybean and corn**, highlighting the importance of irrigation in East Mississippi where OFWS systems can be effective.
- Although some **nutrients** are being recycled, levels in applied irrigation water are **not high enough or consistent enough to allow a reduction in commercial fertilizer application**.

MISSISSIPPI STATE UNIVERSITY

Part B, OFWS as a Tool to Reduce Risk: Objectives

- ✓ Determine net present value of OFWS over the investment period
- ✓ Determine feasibility of irrigating from an OFWS vs. rain-fed production

MISSISSIPPI STATE UNIVERSITY

Study Site and Data

• Site

- ✓ Noxubee County, Brooksville, located in the Mississippi Blackland Prairie
- ✓ Field size is about 408 acres with about 339 irrigated acres
- ✓ Pond size: 17 acres, 25 feet deep
- ✓ 3 Center pivot irrigation systems

Crop prices

- ✓ Projected baseline prices
 - Food and Agriculture Policy and Research (FAPRI)
- ✓ Futures prices
 - Livestock Marketing Information Center (LMIC)
- Noxubee County Crop yields
 - ✓ Risk Management Agency (RMA)
- Weather
 - ✓ PRISM
- Budgets
 - ✓ From MSU Planning Budgets, 2016

Additional Scenarios

- Also looked at typical 80 acre field and 160 acre field
 - Applicable to more producers
 - 80 acre- 1/4 mile pivot making a half circle
 - 160 acre: 1/4 mile pivot making a full circle

Methods

- Creating Budgets

 Price*Yield Costs = Profit
- Mississippi State University Planning Budgets
 - Assume a Corn/Soybean Rotation

MISSISSIPPI STATE UNIVERSITY

- Prices are simulated from historical futures market data
- Yields are simulated from de-trended historical Mississippi yield data
- Weather is simulated from historical Mississippi weather data

MISSISSIPPI STATE UNIVERSITY MEXTENSION

The Simulation

- Simulated net returns over 25 years with random prices, yields, and weather
 - Used to calculate the Net Present Value
 - Accumulated over 25 years while accounting for the time-value of money (Money is worth more now than later.)
- Looked at 80 acre, 160 acre, and 408 acre fields

Simulated Mean Yields, Temperature, and Precipitation

	Average
Non Irrigated Soybean Yield	41.7
Non Irrigated Corn Yield	140.2
Irrigated Corn Yield	176
Irrigated Soybean Yield	51.49
Temperature	75
Precipitation (Accumulated	
March – August)	22.8

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Net Present Value with Up-Front Payment for 80 Acre Field

		49	%	6	%	8	%
Que la		Ι	R	Ι	R	Ι	R
and the second	Mean(\$)	(122)	518	(347)	424	(517)	353
NI	Min(\$)	(1,537)	(2,788)	(1,723)	(2,245)	(1,835)	(1,926)
	Max(\$)	1,600	4,141	1,063	3,453	658	2,931
	Mean(\$)	198	873	(85)	715	(296)	597
70%	Min(\$)	(883)	(604)	(1,038)	(517)	(1,151)	(446)
	Max(\$)	1,756	4,068	1,186	3,392	756	2,878
	Mean(\$)	270	918	(25)	751	(246)	627
75%	Min(\$)	(739)	(455)	(915)	(395)	(1,050)	(344)
	Max(\$)	1,808	4,030	1,233	3,359	798	2,850
	Mean(\$)	331	938	26	767	(296)	641
80%	Min(\$)	(596)	(350)	(793)	(308)	(1,151)	(271)
	Max(\$)	1,831	3,957	1,253	3,298	756	2,797
0.50/	Mean(\$)	364	917	53	750	(179)	626
85%	Min(\$)	(473)	(280)	(707)	(249)	(884)	(221)
	Max(\$)	1,809	3,849	1,235	3,206	802	2,717

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Net Present Value with Up-Front Payment for 160 Acre Field

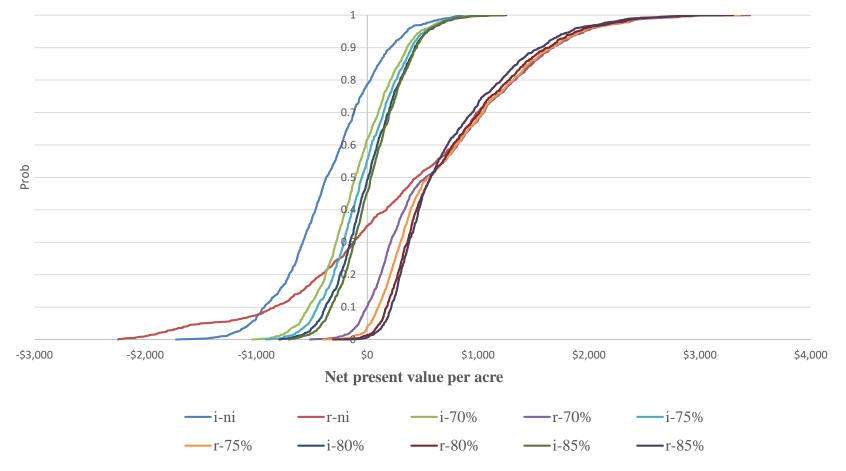
No asi		4	%	64	%	8	%
S CUTATION	and the second	Ι	R	Ι	R	Ι	R
NI	Mean(\$)	376	518	151	424	(18)	353
NI	Min(\$)	(1,018)	(2,788)	(1,204)	(2,245)	(1,317)	(1,926)
	Max(\$)	2,062	4,141	1,528	3,453	1,127	2,931
700/	Mean(\$)	696	873	415	715	204	597
70%	Min(\$)	(354)	(604)	(509)	(517)	(628)	(446)
	Max(\$)	2,228	4,068	1,660	3,392	1,233	2,878
75%	Mean(\$)	768	918	474	751	255	627
/5%	Min(\$)	(210)	(455)	(387)	(395)	(526)	(344)
	Max(\$)	2,279	4,030	1,706	3,359	1,273	2,850
80%	Mean(\$)	831	938	526	767	306	641
80%	Min(\$)	(67)	(350)	(265)	(308)	(338)	(271)
	Max(\$)	2,302	3,957	1,726	3,298	1,216	2,797
85%	Mean(\$)	864	917	554	750	322	626
0370	Min(\$)	58	(280)	(178)	(249)	(356)	(221)
	Max(\$)	1,809	3,849	1,711	3,206	1,280	2,717

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Net Present Value with Up-Front Payment for 408 Acre Field

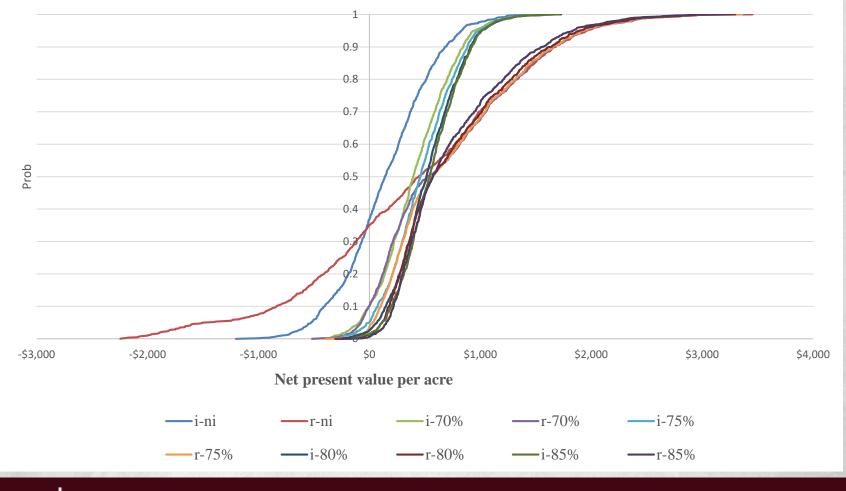
UVA NUS	1945-1946	4	%	69	%	89	%
P. NOV	1 Alexandre	I	R	I	R	Ι	R
	Mean(\$)	248	518	22	424	(148)	353
NI	Min(\$)	(1,156)	(2,788)	(1,342)	(2,245)	(1,456)	(1,926)
	Max(\$)	1,980	4,141	1,439	3,453	1,032	2,931
	Mean(\$)	571	873	287	715	75	597
70%	Min(\$)	(498)	(604)	(654)	(517)	(767)	(446)
	Max(\$)	2,143	4,068	1,569	3,392	1,136	2,878
	Mean(\$)	644	918	347	751	126	627
75%	Min(\$)	(352)	(455)	(530)	(395)	(665)	(344)
	Max(\$)	2,194	4,030	1,615	3,359	1,177	2,850
0004	Mean(\$)	706	938	399	767	170	641
80%	Min(\$)	(208)	(350)	(407)	(308)	(569)	(271)
	Max(\$)	2,216	3,957	1,634	3,298	1,195	2,797
0.50/	Mean(\$)	739	917	427	750	194	626
85%	Min(\$)	(85)	(280)	(320)	(249)	(499)	(221)
	Max(\$)	2,193	3,849	1,615	3,206	1,179	2,717

MISSISSIPPI STATE UNIVERSITY MEXTENSION

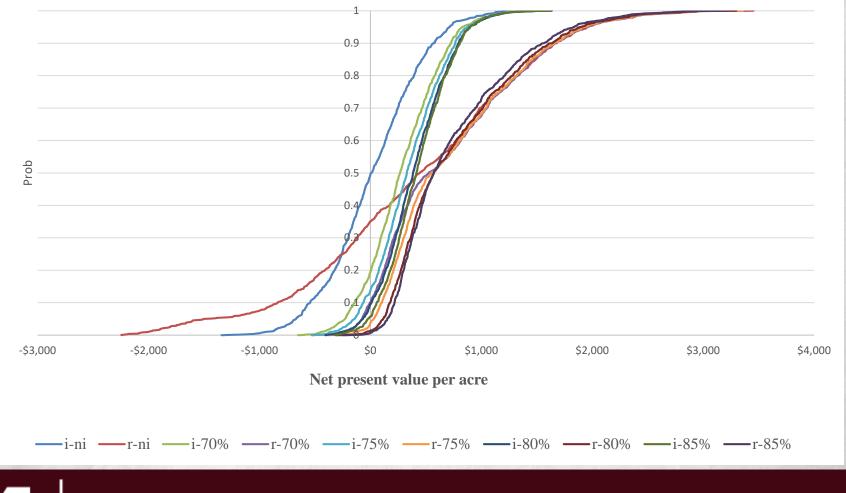

Net Present Value with Financing for OFWS on a 160 Acre Field

		4	%	6'	%	89	%
1910	an inte	Ι	R	Ι	R	Ι	R
	Mean(\$)	445	518	299	424	203	353
NI	Min(\$)	(1,053)	(2,788)	(1,149)	(2,245)	(1,024)	(1,926)
	Max(\$)	2,201	4,141	1,739	3,453	1,399	2,931
	Mean(\$)	774	873	570	715	427	597
70%	Min(\$)	(354)	(604)	(425)	(517)	(493)	(446)
	Max(\$)	2,358	4,068	1,863	3,392	1,497	2,878
	Mean(\$)	850	918	633	751	480	627
75%	Min(\$)	(206)	(455)	(299)	(395)	(387)	(344)
	Max(\$)	2,417	4,030	1,916	3,359	1,545	2,850
	Mean(\$)	915	938	688	767	527	641
80%	Min(\$)	(58)	(350)	(173)	(308)	(285)	(271)
	Max(\$)	2,441	3,957	1,937	3,298	1,565	2,797
0.50/	Mean(\$)	951	917	717	750	552	626
85%	Min(\$)	65	(280)	(80)	(249)	(204)	(221)
	Max(\$)	2,420	3,849	1,920	3,206	1,551	2,717

MISSISSIPPI STATE UNIVERSITY MEXTENSION


CDF at 6% discount rate on 80 acre field and OFWS costs paid up-front

MISSISSIPPI STATE UNIVERSITY MEXTENSION


CDF at 6% discount rate on 160 acre field and OFWS costs paid up-front

MISSISSIPPI STATE UNIVERSITY MEXTENSION

CDF at 6% discount rate on 160 acre field and OFWS costs financed

MISSISSIPPI STATE UNIVERSITY Dep EXTENSION Agricult

What about Cost-Sharing

- Reduced cost of the construction of the reservoir
 - 20% Cost Share
 - 40% Cost Share
- Available from NRCS in Delta, but not in Non-Delta Areas

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Net Present Value with Cost Share on 160 acre field and up-front payment

	% Cost Share	4%	6%	8%
	20	453 (518)	229 (424)	61 (353)
NI	40	530 (518)	306 (424)	139 (353)
	20	942 (873)	632 (715)	400 (597)
70%	40	1,018 (873)	709 (715)	478 (597)
	20	908 (918)	604 (751)	377 (627)
75%	40	984 (918)	681 (751)	454 (627)
	20	846 (938)	552 (767)	333 (641)
80%	40	923 (938)	629 (767)	410 (641)
0.50	20	774 (917)	493 (750)	283 (626)
85%	40	851 (917)	570 (750)	360 (626)

NPV for Rainfed in parentheses.

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Net Present Value with Cost Share on 160 acre field and OFWS System Financed

	% Cost Share	4%	6%	8%	
	20	523 (518)	370 (424)	191 (353)	
NI	40	600 (518)	440 (424)	249 (353)	
	20	852 (873)	641 (715)	385 (597)	
70%	40	928 (873)	711 (715)	443 (597)	
	20	928 (918)	704 (751)	431 (627)	
75%	40	1,004 (918)	773 (751)	489 (627)	
0.004	20	993 (938)	758 (767)	471 (641)	
80%	40	1,069 (938)	827 (767)	528 (641)	
0.501	20	1,029 (917)	788 (750)	493 (626)	
85%	40	1,105 (917)	857 (750)	551 (626)	NPV for Rai

STATE

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Conclusions

Estimated NPV of OFWS depends heavily upon the scenario in which it is used

Costs must be spread out over as many acres as possible

- Maximize efficiency
- Better to take out a loan than to pay upfront
- Lower discount rates are better (depends on alternative)

Government incentives will make irrigation more attractive
 Cost share program is instrumental

When combined with crop insurance, OFWS dramatically reduces income variability and is an effective risk management strategy

MISSISSIPPI STATE UNIVERSITY MEXTENSION

Acknowledgements

- ➢ Farmers: Mr. Dale Weaver and Mr. Paul Good
- Dr. Dennis Reginelli, Regional Extension Specialist, Northeast Region

MISSISSIPPI STATE UNIVERSITY MEXTENSION