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Background and Objectives 

The Mississippi State Chemical Laboratory (MSCL) routinely analyzes drift complaint samples in the 

spring. Most of these complaints consist of injured ornamentals or soybeans exposed to the following 

herbicides: 2,4-D, atrazine, acetochlor, dicamba, glyphosate, and paraquat. The lab currently uses 

sensitive liquid chromatographic techniques including LC-MS/MS to identify these compounds at residue 

levels. However, this sensitive method cannot differentiate between the acid, amine, ester, or choline 

formulations of 2,4-D and dicamba. Therefore, it is imperative new analytical methods are developed to 

ensure an effective stewardship program. We have begun to investigate the use of Fourier transform 

infrared spectroscopy (FT-IR) and preliminary data looks promising. Research was conducted in 2017, 

2018, and 2019 in Starkville, MS using chemometrics coupled to FT-IR to produce classification models 

capable of identifying specific 2,4-D and Dicamba formulations present in damaged crop tissue. Our 

project had two main objectives: 

1. Develop and validate analytical testing methods using FT-IR technology to differentiate 2,4-D 

and dicamba herbicides formulations. 

 

2. Work with the Bureau of Plant Industry and MSU Extension agents to participate in a grower’s 

educational program and design an off-target field sampling program for best practices and 

fundamental integrated pest management. 
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Report of Progress/Activity 

 

Application of FTIR spectroscopy and chemometrics for the classification of 2,4-D formulations in 

damaged cotton and soybean tissue 

 

Increased use of 2,4-D in row crop production may lead to increased cases of damage to susceptible 

cotton and soybeans following off-target movement (OTM) of 2,4-D. Research was conducted in 2017 

and 2018 in Starkville, MS to develop a method using chemometrics and spectroscopy to produce 

classification models capable of identifying specific 2,4-D formulations present in damaged crop tissue. 

2,4-D acid (ACID), dimethylamine salt (DMA), choline salt (CHOLINE), and isooctyl ester (ESTER) 

were applied to susceptible cotton and soybeans at 33, 17, 8, 4, 2, and 1 g 2,4-D ae ha-1, and samples were 

analyzed via infrared spectroscopy to generate spectra which were then analyzed by principal component 

analysis (PCA) and linear discriminant analysis (LDA). Joint PCA-LDA models were only capable of 

classifying 2,4-D formulation in damaged tissue with up to 36% accuracy, whereas LDA alone produced 

models with 77 to 80% accuracy. Models performed worst when classifying 2,4-D DMA or ESTER and 

best when classifying 2,4-D CHOLINE or ACID. Model accuracies were similar regardless of sample 

media (soybean or cotton tissue) or data format (raw spectral data vs normalized, derived, and smoothed 

spectra). This research suggests that with further refining, chemometric analysis of spectral data from 

damaged crop tissue may be an economical, efficient, and promising application to support management 

of crop injury following OTM of 2,4-D. 

 

 

Results and Discussion 

Raw and Transformed Data Matrices. Baseline- and ATR- corrected spectra (raw spectra) from cotton 

and soybean samples treated with the different 2,4-D formulations are shown pooled over 2,4-D 

concentration and sampling timing in Figures 3 and 4, respectively. Significant peaks occurred at 3800 to 

3000 cm-1 and 1800 to 800 cm-1. The broad peak at 3800 to 3000 cm-1 is due to the O-H bend in water 

found in plant tissue and was ignored in further analysis. The spectral region commonly referred to as the 

‘fingerprint region’ between 1800 to 800 cm-1 was included in spectral analysis. Raw cotton and soybean 

fingerprint spectra from tissue treated with various 2,4-D formulations are shown pooled over 

concentration and sampling timing in Figures 5 and 6, respectively. Increased resolution of spectral 

features became observable by narrowing the spectral focus in these Figures. Normalized, derived, and 

smoothed cotton and soybean fingerprint spectra are shown pooled over concentration and sampling 

timing in amplified differences in spectral features between samples. In a preliminary analysis of similar 

data, Reid (2017) used PCA loading plots to identify the most important spectral features in the soybean 

analyses at 1687 and 1560 cm-1, which most likely represent the aromatic ring of 2,4-D and the primary or 

secondary amine from its various formulated salts. Similarly, PCA loading plot examination determined 

peaks between 1633 and 1556 cm-1 and 1395 to 1350 cm-1 are important for soybean sample 

classification. The peaks between 1633 and 1556 cm-1 likely represent the aromatic ring of the 2,4-D 

molecule and the primary or secondary amines from the formulated salts, and the features between 1395 

and 1350 cm-1 indicate the carboxylic acid group present in 2,4-D formulations (Reid 2017). These 

spectral features provided the basis for determining a spectral range for use in subsequent PCA and LDA.   

 

PCA, LDA, and Joint PCA-LDA on Raw Data 

Cotton. PCA performed on the raw data pooled across concentrations and evaluation timings resulted in 

PC1 and PC2 accounting for 89 and 7% of the explained variation, respectively, and 100% total explained 

variation contained in the first 4 PC (Table 2). A 3D PCA scores plot of the first three PC demonstrates 

little clustering by 2,4-D formulation, despite the high amount of variation contained in the first three PC. 

LDA of the raw data pooled across concentrations and evaluation timings and using the eigenvectors 

generated by dimensional reduction via PCA produced a classification model with 33.38% accuracy 

(Table 3). The discrimination plot for this model is shown in Figure 10, where there is some linearization 
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of samples by formulation. This linear pattern of the discrimination plot is in contrast to the distinct 

clustering by formulation reported by Reid (2017) and other previous research in different media (Deng et 

al. 2016; Lee et al. 2009; Lehmann et al. 2015). Lack of distinct clustering is likely due to the nature of 

these models as classifying formulation across multiple concentrations and evaluation timings. The 

corresponding confusion matrix displaying the PCA-LDA model’s prediction of 2,4-D formulation from a 

given sample of crop tissue plotted against the actual value is shown in Table 4. The classification model 

performed best identifying 2,4-D CHOLINE (44% accuracy), and worst identifying 2,4-D DMA (18% 

accuracy). LDA conducted alone (without PCA) on the raw cotton spectra produced a classification 

model with 77.16% accuracy, a significant improvement over the joint PCA-LDA model (Table 3). The 

discrimination plot of this model there is noticeable linear clustering of each formulation. The level of 

accuracy produced by this model is more consistent with previous research, although the clustering 

pattern remains irregular (Deng et al. 2016; Lee et al. 2009; Lehmann et al. 2015; Reid 2017). The 

corresponding confusion matrix following LDA alone is shown in Table 6 which demonstrates the most 

accuracy when identifying 2,4-D CHOLINE (89%) and least accurate when identifying 2,4-D DMA 

(71%) although even the poorest accuracy of this model (71%, Table 6) was a significant improvement 

over the joint PCA-LDA model and is closer to the accuracy reported by Reid (2017).   

 

Soybeans. PCA performed on the raw soybean spectral data across concentrations and evaluation timings 

generated five PCs accounting for 69, 23, 5, 1, and 1% variation in PCs 1, 2, 3, 4, and 5, respectively, for 

a total of 99% variation contained in the first 5 PCs (Table 2). Despite a high proportion of variation 

explained by PC1 and PC2, the 3D score plot again reflects poor clustering by formulation. Joint PCA-

LDA of resulted in a classification model with 36.26% accuracy (Table 3) and the discrimination plot for 

this model. Linearization of samples by variation is present but overall clustering remains poor relative to 

previous work in other sample media (Deng et al. 2016; Lee et al. 2009). The corresponding confusion 

matrix from this model is shown in Table 7. This model was most accurate (44%, 45% accuracy) when 

classifying tissue containing 2,4-D CHOLINE and ACID (respectively), and least accurate (16% 

accuracy) when classifying tissue containing 2,4-D ESTER (Table 7), which is in contrast to the cotton 

models that were most accurate classifying 2,4-D CHOLINE and least accurate with 2,4-D DMA. LDA 

conducted alone on the raw soybean spectral data produced a classification model with 79.84% accuracy 

(Table 3). Figure 18 shows a discrimination plot from this model with distinct linear clustering of each 

formulation. The accuracy of this model was more similar to Reid (2017) although the clustering pattern 

was linear as opposed to the bunched patterns reported by previous research (Reid 2017; Lehmann et al. 

2015), likely due to analysis over a wide range of variable levels (concentrations, sample timings), as 

opposed to the fixed levels found in most previous research. This LDA’s corresponding confusion matrix 

is shown in Table 9. Up to 80 to 81% accuracy was achieved by this model when classifying 2,4-D 

CHOLINE and 2,4-D DMA, respectively, and the poorest accuracy was still reasonable (66%) when 

classifying 2,4-D ESTER (Table 9). 

   

PCA and PCA-LDA on Transformed Data  

Cotton. PCA of cotton spectra normalized to the area under the curve, derived to the first Savitzky-Golay 

derivative, and smoothed with Savitzky-Golay smoothing produced a 3D PC score plot, which does not 

reflect distinct clustering by formulation despite the first two PCs accounting for 71 and 12% variation, 

respectively. Joint PCA-LDA on transformed cotton spectra constructed a classification model with only 

34.8% accuracy (Table 3), which is reflected by the lack of clustering by formulation in the LDA 

discrimination plot. In contrast, Reid (2017) produced discrimination plots with a high degree of 

clustering, but only utilized one concentration fixed over sampling timing. The corresponding confusion 

matrix for the classification model produced by PCA-LDA on transformed cotton spectra is presented in 

Table 5. This model was able to achieve up to 45% accuracy when classifying samples treated with 2,4-D 

CHOLINE and 29% accuracy when classifying samples treated with 2,4-D DMA, the same trend in 

classification performance observed in models from analysis of non-transformed (raw) cotton spectra. 
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Soybeans. A 3D PC scores plot of transformed soybean spectra is shown in Figure 16 which depicts little 

distinct clustering by formulation, despite 83% of the total explained variation being contained in PC1 

(Table 2). Joint PCA-LDA produced a classification model with 32.42% overall accuracy (Table 3). The 

discrimination plot for this model depicts linearization of formulations with little sandwiching or 

clustering. Similarly, the confusion matrix constructed by joint PCA-LDA reflects poor accuracy across 

individual 2,4-D formulations (Table 8). Accuracy of this model ranged from 15% accuracy in classifying 

2,4-D ESTER to 40% accuracy in classifying 2,4-D ACID (Table 8). These model accuracies, albeit poor, 

are largely similar to those produced by analysis of raw spectral data and are markedly less than those 

reported by Reid (2017).
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Table 2. Variation explained by each PC following PCA of fingerprint (1800 to 800 cm-1) spectra from 

cotton or soybean tissue treated 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over 

evaluation timing (7, 14, 21, 28, and 56 d after treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-

D ae ha-1).a 

Data 

Matrix 

Data Typeb  

  PC1 PC2 PC3 PC4 PC5 

  ------------------------------------------%----------------------

---------        

Cotton 

Spectra  

Raw 89 7 2 2 - 

Cotton 

Spectra 

Transformed 71 12 3 2 2 

Soybean 

Spectra 

Raw 69 23 5 1 1 

Soybean 

Spectra 

Transformed 83 4 3 2 1 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; PC, 

principal component; PCA, principal component analysis 
bRaw spectral data were not normalized, derived or smoothed; Transformed spectral data were 

normalized to the area under the curve, derived to the first Savitzky-Golay derivative, and Savitzky-

Golay smoothed 
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Table 3. Classification model parameters following LDA alone or joint with PCA of fingerprint spectra (1800 to 800 cm-1) from cotton or soybean 

tissue treated 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 21, 28, and 56 d after treatment) 

and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 

Data Matrix Data Typeb Model Source Accuracy 

   % 

Cotton Spectra  Raw PCA-LDA 33.38 

Cotton Spectra Raw LDA  77.16 

Cotton Spectra Transformed PCA-LDA 34.8 

Soybean Spectra Raw PCA-LDA 36.26 

Soybean Spectra Raw LDA 79.85 

Soybean Spectra Transformed PCA-LDA 32.42 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, principal 

component analysis  
bRaw spectral data were not normalized, derived or smoothed; Transformed spectral data were normalized to the area under the curve, 

derived to the first Savitzky-Golay derivative, and Savitzky-Golay smoothed  



 
MISSISSIPPI SOYBEAN PROMOTION BOARD 

WWW.MSSOY.ORG SEPTEMBER 2020 7 

Table 4. Confusion matrix from the classification model generated by LDA joint with PCA of raw fingerprint spectra (1800 to 800 cm-1) from 

cotton tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 21, 28, and 56 d after 

treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 

 Actual 

formulation 

ACID DMA CHOLINE ESTER  

Predicted 

formulation 

 -----------------------------------%-----------------------------------  

ACID  25 16 18 9  

DMA  19 18 12 10  

CHOLINE  38 33 44 36  

ESTER  18 33 26 45  

Accuracy (%)  25 18 44 45 33.38† 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, principal 

component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 5. Confusion matrix from the classification model generated by LDA joint with PCA of transformed fingerprint (1800 to 800 cm-1) from 

cotton tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 21, 28, and 56 d after 

treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a,b 

 Actual 

formulation 

ACID DMA CHOLINE ESTER  

Predicted 

formulation 

 -----------------------------------%-----------------------------------  

ACID  31 19 16 13  

DMA  23 29 18 12  

CHOLINE  36 32 45 43  

ESTER  10 20 21 32  

Accuracy (%)  31 29 45 32 34.8† 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, principal 

component analysis 
bTransformed spectral data were normalized to the area under the curve, derived to the first Savitzky-Golay derivative, and Savitzky-Golay 

smoothed 

†Weighted average accuracy across all formulation classifications (overall classification model accuracy) 
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Table 6. Confusion matrix from the classification model generated by LDA without PCA of raw fingerprint spectra (1800 to 800 cm-1) of cotton 

tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 21, 28, and 56 d after 

treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 

 Actual formulation ACID DMA CHOLINE ESTE

R 

 

Predicted 

formulation 

 -----------------------------------%-----------------------------------  

ACID  73 13 7 9  

DMA  3 71 2 3  

CHOLINE  19 14 89 14  

ESTER  5 2 2 74  

Accuracy (%)  73 71 89 74 77.16† 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, principal 

component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 7. Confusion matrix from the classification model generated by LDA joint with PCA of raw fingerprint spectra (1800 to 800 cm-

1) from soybean tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 

21, 28, and 56 d after treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 

 Actual 

formulation 

ACID DMA CHOLINE ESTER  

Predicted 

formulation 

 -----------------------------------%-----------------------------------  

ACID  45 25 25 36  

DMA  16 35 18 34  

CHOLINE  22 28 44 14  

ESTER  17 12 12 16  

Accuracy (%)  45 35 44 16 36.26† 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, 

principal component analysis  

†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 8. Confusion matrix from the classification model generated by LDA joint with PCA of transformed fingerprint (1800 to 800 cm-

1) from soybean tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 

21, 28, and 56 d after treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a,b 

 Actual 

formulation 

ACID DMA CHOLINE ESTER  

Predicted 

formulation 

 -----------------------------------%-----------------------------------  

ACID  40 18 30 27  

DMA  26 36 28 28  

CHOLINE  16 24 35 30  

ESTER  18 22 7 15  

Accuracy (%)  40 36 35 15 32.42† 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, 

principal component analysis 
bTransformed spectral data were normalized to the area under the curve, derived to the first Savitzky-Golay derivative, and Savitzky-

Golay smoothed  

†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 9. Confusion matrix from the classification model generated by LDA without PCA of raw fingerprint spectra (1800 to 800 cm-1) 

of soybean tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER pooled over evaluation timing (7, 14, 21, 

28, and 56 d after treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 

 Actual 

formulation 

ACID DMA CHOLINE ESTER  

Predicted 

formulation 

 -----------------------------------%-----------------------------------  

ACID  78 7 13 14  

DMA  6 81 2 14  

CHOLINE  6 7 80 6  

ESTER  10 5 5 66  

Accuracy (%)  78 81 80 66 79.85† 

aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester; LDA, linear discriminant analysis; PCA, 

principal component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy) 
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Figure 5. Raw fingerprint spectra (1800 to 800 cm-1) from cotton tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D ESTER 

pooled over evaluation timing (7, 14, 21, 28, and 56 d after treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 
aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester 
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Figure 6.  Raw fingerprint spectra (1800 to 800 cm-1)  from soybean tissue treated with 2,4-D acid, 2,4-D DMA, 2,4-D CHOLINE, or 2,4-D 

ESTER pooled over evaluation timing (7, 14, 21, 28, and 56 d after treatment) and 2,4-D concentration (33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1).a 
aAbbreviations: DMA, dimethylamine salt; CHOLINE, choline salt; ESTER, isooctyl ester 
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Application of FTIR spectroscopy and chemometrics for the classification of dicamba formulations 

in damaged cotton and soybean tissue 

 

 

Research was conducted in 2017, 2018, and 2019 in Starkville, MS to develop a chemometrics and 

spectroscopy method to create a classification model capable of identifying specific dicamba formulations 

present in damaged crop tissue. Dicamba diglycolamine (DGA), dimethylamine (DMA), N,N-Bis-(3-

Aminopropyl) methylamine (BAPMA), and diglycolamine with potassium acetate (DGAKAC) were 

applied to susceptible cotton and soybeans at 35, 17.5, 8.75, 4.375, 2.1875, and 1.09375 g dicamba ae ha-

1, and samples were analyzed with infrared spectroscopy, which were further analyzed using principal 

component analysis (PCA) and linear discriminant analysis (LDA). Joint PCA-LDA models were only 

capable of classifying dicamba formulation with 39.82% accuracy, whereas LDA alone was 80 to 85% 

accurate. Models performed worst when classifying dicamba DMA (27% to 80% accuracy), and best 

when classifying dicamba DGA/DGAKAC (40 to 85% accuracy). Correct classification of dicamba DGA 

in the presence of dicamba DGAKAC (and vice-versa) was reduced relative to other formulations, likely 

due to similarity of the molecular structure of DGA and DGAKAC. This research suggests that with 

further refining, chemometric analysis of spectral data from damaged crop tissue may be an economical, 

efficient, and promising application to support management of crop injury cases following OTM of 

dicamba. 

 

Results and Discussion 

Raw and Transformed Data Matrices. Automatic baseline- and ATR- corrected spectra (raw spectra) 

from cotton and soybean samples treated with the various dicamba formulations are shown pooled over 

dicamba concentration and sampling timing. The only significant peaks occurred at 3800 to 3000 cm-1 

and 1800 to 800 cm-1, however, the broad peak at 3800 to 3000 cm-1 is due to the O-H bend in water 

found in plant tissue. As such, only the spectral region commonly referred to as the ‘fingerprint region’ 

between 1800 to 800 cm-1 was included in spectral analysis. Raw cotton and soybean spectra narrowed to 

the fingerprint region between 1800 to 800 cm-1 from tissue treated with the various dicamba 

formulations were pooled over dicamba concentration and sampling timing where an increased resolution 

of spectral features have become observable by narrowing the spectral focus. Normalized, derived, and 

smoothed cotton and soybean fingerprint spectra from tissue treated with the various dicamba 

formulations are shown pooled over dicamba concentration and sampling timing, and reflect 

amplification of differences in spectral features between samples. In a preliminary analysis of similar 

data, Reid (2017) used PCA loading plots to determine the most important spectral features in the 

soybean analyses are between 1687 and 1560 cm-1 and most likely represent the aromatic ring of dicamba 

and the primary or secondary amine from the various salts formulated with it. In the cotton analyses, PCA 

loading plot examination suggests that peaks between 1633 and 1556 cm-1 and 1395 to 1350 cm-1 are 

important for sample differentiation. The peaks between 1633 and 1556 cm-1 are most likely from the 

aromatic ring of the 2,4-D molecule and the primary or secondary amines from its formulated salts, and 

the features between 1395 and 1350 cm-1 are typical of a carboxylic acid group, which is present in the 

majority of the 2,4-D formulations (Reid 2017). These peaks provided the basis for determining a spectral 

range for use in subsequent PCA and LDA analyses.  

 

PCA, LDA, and Joint PCA-LDA on Raw Data 

Cotton. PCA performed on the raw spectral data pooled across concentrations and evaluation timings 

resulted in the first two PC (Principal Components) accounting for 93% of the explained variance, and 

99% total explained variance contained in the first 5 PC. Minor sandwiching/clustering of samples by 

dicamba formulation can be observed in a 3D PCA graph of the first three PC. LDA of the raw spectral 

data pooled across concentrations and evaluation timings and using the eigenvectors generated by 



 
MISSISSIPPI SOYBEAN PROMOTION BOARD 
 

WWW.MSSOY.ORG SEPTEMBER 2020 16 

dimensional reduction via PCA resulted in a classification model with 39.12% accuracy (Table 3); this 

discrimination plot is shown in Figure 10, where there is evident linear clustering of samples by 

formulation. However, this level and pattern of clustering is significantly less structured than those 

reported in previous research, although said research utilized different sample media (Deng et al. 2016; 

Lee et al. 2009). Construction of a classification model allows the generation of a confusion matrix 

displaying the model’s prediction of dicamba formulation in a spectrum from a given sample of crop 

tissue damaged by dicamba plotted against the actual value. The confusion matrix from the classification 

model generated by joint LDA-PCA of raw fingerprint spectra (1800 to 800 cm-1) from cotton tissue is 

shown in Table 4. The classification model performed best identifying dicamba DGAKAC (47% 

accuracy), and worst identifying dicamba DMA (33% accuracy). LDA conducted alone (without PCA) on 

the raw cotton spectral data resulted in a classification model with 84.78% accuracy (Table 3). The 

discrimination plot of this classification model, where there is noticeable linear clustering of each 

formulation. The level of accuracy with this model is more in-line with previous research, although the 

clustering pattern remains irregular (Deng et al. 2016; Lee et al. 2009). The confusion matrix results of 

the classification model prediction following LDA alone is shown in Table 6. This classification model 

was most accurate when identifying dicamba BAPMA (90%) and least accurate when identifying 

dicamba DMA (80%) although it was no less accurate than 80% for any given formulation (Table 6).  

 

Soybeans. PCA performed on the raw soybean spectral data pooled across concentrations and evaluation 

timings resulted in the first PC accounting for 95% of the explained variance, and 100% total explained 

variance contained in the first 3 PC. Despite a high proportion of variance explained by PC1, the 3D score 

plot from the PCA on raw soybean spectral data reflects poor clustering of all formulations except 

dicamba BAPMA. Joint PCA-LDA of raw soybean spectral data resulted in a classification 

model with 35.15% accuracy (Table 3). A discrimination plot from this model is shown in Figure 

15, where there is some linear clustering by formulation visible, but overall clustering appears 

poor, again in contrast to previous work on other sample media (Deng et al. 2016; Lee et al. 

2009). The resulting confusion matrix from this model is shown in Table 7. This classification 

model performed best (47% accuracy) when classifying tissue containing dicamba DGA, and 

poorest (27% accuracy) when classifying tissue containing dicamba DMA (Table 7). When LDA 

was conducted alone on the raw soybean spectral data, a classification model with 79.64% 

accuracy was created (Table 3). A discrimination plot from this model there is distinct linear 

clustering of each formulation, reflecting the model’s improved classification accuracy. In this 

case, discrimination plot accuracy was more similar to previous work such as Ami et al. (2010), 

which used similar methods to classify embryonic stem cell differentiation. However, the 

clustering pattern was linear as opposed to the bunched patterns reported by Lehmann et al. 

(2015). The confusion matrix generated by the LDA alone on soybean raw spectral data is shown 

in Table 9. This model was capable of up to 84% accuracy when classifying dicamba DGA, and 

only 76% accuracy when classifying dicamba DMA.  

 

PCA and Joint PCA-LDA on Transformed Data  

Cotton. PCA on cotton spectra normalized to the area under the curve, derived to the first Savitzky-Golay 

derivative, and smoothed with Savitzky-Golay smoothing resulted in a 3D PC score plot shown. Poor 

clustering is present in this score plot, with no samples noticeably clustered by formulation. This trend is 

reflected in the somewhat reduced amount of total explained variation occurring in the first three PC of 

the PCA (65, 13, and 6%, respectively). Similarly, a joint PCA-LDA conducted on transformed cotton 

spectra resulted in a classification model with only 39.82% accuracy (Table 3). The poor accuracy of this 

model is reflected by the noticeably poor clustering of samples by formulation shown in the LDA 
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discrimination plot in Figure 12, in stark contrast to the high degree of clustering shown in previous 

research on other sample media (Ami et al. 2010; Deng et al. 2016; Lee et al. 2009; Lehmann et al. 2015). 

The poor accuracy of this classification model is further depicted in its corresponding prediction 

confusion matrix shown in Table 5. This model was only able to achieve 49% accuracy at best (when 

classifying samples treated with dicamba DGA) and 33% accuracy at worst (when classifying samples 

treated with dicamba DGAKAC, Table 5).  

 

Soybeans. The 3D PC scores plot of transformed soybean spectra analyzed via PCA. There is some minor 

clustering of samples treated with dicamba BAPMA or dicamba DMA visible, but overall clustering 

remains poor. Only 54% of the total explained variance in this classification is contained in PC1, with an 

additional 21% in PC2, and 7% in PC3, indicating poorly-clustered, highly-variable data (Table 2). Joint 

PCA-LDA of the transformed soybean spectra resulted in a classification model with 34.59% accuracy 

(Table 3). The discrimination plot for this model there appears to be some linear clustering of samples by 

formulation, but most of which is conflated by overlapping formulation clusters. The formulation 

classification confusion matrix generated from this joint PCA-LDA reflects the poor clustering and 

accuracy of the model (Table 8). Accuracy of this model ranged from 32 to 38%, was best when 

classifying dicamba DMA, and worst when classifying dicamba BAPMA (Table 8). These results from 

transformed soybean spectra are largely similar to those of cotton in that the clustering patterns, model 

accuracy, and levels of explained variation are poor and dissimilar to those reported in similar research on 

other sample media (Ami et al. 2010; Deng et al. 2016; Lee et al. 2009; Lehmann et al. 2015).  
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Table 3. Classification model parameters following LDA alone or joint with PCA of fingerprint 

spectra (1800 to 800 cm-1) from cotton or soybean tissue treated with dicamba DGA, dicamba 

DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 14, 21, 28, and 

56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba 

ae ha-1).a 

Data Matrix Data Typeb Model Source Accuracy 

   % 

Cotton Spectra  Raw PCA-LDA 39.12 

Cotton Spectra Raw LDA  84.78 

Cotton Spectra Transformed PCA-LDA 39.82 

Soybean Spectra Raw PCA-LDA 35.15 

Soybean Spectra Raw LDA 79.64 

Soybean Spectra Transformed PCA-LDA 34.59 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; 

DGAKAC, diglycolamine salt with potassium acetate; DMA, dimethylamine salt; LDA, linear 

discriminant analysis; PCA, principal component analysis 
bRaw spectral data were not normalized, derived or smoothed; Transformed spectral data were 

normalized to the area under the curve, derived to the first Savitzky-Golay derivative, and Savitzky-

Golay smoothed 
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Table 4. Confusion matrix from the classification model generated by LDA joint with PCA of raw fingerprint spectra (1800 to 800 cm-1) 

from cotton tissue treated with dicamba DGA, dicamba DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 

14, 21, 28, and 56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba ae ha-1).a 

 Actual 

formulation 

BAPMA DGA DGAKAC DMA  

Predicted 

formulation 

 -------------------------------------%-------------------------------------  

BAPMA   36 

32 

18 19 16  

DGA  27 

 

 

40 26 31  

DGAKAC  22 26 48 20  

DMA  15 16 7 33  

Accuracy (%)  36 40 48 33 39.12† 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; DGAKAC, diglycolamine salt with 

potassium acetate; DMA, dimethylamine salt; LDA, linear discriminant analysis; PCA, principal component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 5. Confusion matrix from the classification model generated by LDA joint with PCA of transformed fingerprint (1800 to 800 cm-1) 

from cotton tissue treated with dicamba DGA, dicamba DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 

14, 21, 28, and 56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba ae ha-1).a,b 

 Actual 

formulation 

BAPMA DGA DGAKAC DMA  

Predicted 

formulation 

 --------------------------------------%--------------------------------------  

BAPMA   42 

 

40 

32 

15 29 21  

DGA  25 

 

 

49 28 32  

DGAKAC  23 24 33 11  

DMA  10 13 10 35  

Accuracy (%)  42 49 33 35 39.82† 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; DGAKAC, diglycolamine salt with 

potassium acetate; DMA, dimethylamine salt; LDA, linear discriminant analysis; PCA, principal component analysis 
bTransformed spectral data were normalized to the area under the curve, derived to the first Savitzky-Golay derivative, and Savitzky-Golay 

smoothed 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 6. Confusion matrix from the classification model generated by LDA without PCA of raw fingerprint spectra (1800 to 800 cm-1) of 

cotton tissue treated with dicamba DGA, dicamba DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 14, 21, 

28, and 56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba ae ha-1).a 

 Actual 

formulation 

BAPMA DGA DGAKAC DMA  

Predicted 

formulation 

 --------------------------------------%--------------------------------------  

BAPMA   90 4 5 4  

DGA  1 84 5 11  

DGAKAC  6 4 85 5  

DMA  3 8 5 80  

Accuracy (%)  90 84 85 80 84.78† 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; DGAKAC, diglycolamine salt with 

potassium acetate; DMA, dimethylamine salt; LDA, linear discriminant analysis; PCA, principal component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 7. Confusion matrix from the classification model generated by LDA joint with PCA of raw fingerprint spectra (1800 to 800 cm-1) 

from soybean tissue treated with dicamba DGA, dicamba DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 

14, 21, 28, and 56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba ae ha-1).a 

 Actual 

formulation 

BAPMA DGA DGAKAC DMA  

Predicted 

formulation 

 --------------------------------------%--------------------------------------  

BAPMA   32 20 13 15  

DGA  40 47 40 38  

DGAKAC  15 18 33 20  

DMA  13 15 14 27  

Accuracy (%)  32 47 33 27 35.15† 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; DGAKAC, diglycolamine salt with 

potassium acetate; DMA, dimethylamine salt; LDA, linear discriminant analysis; PCA, principal component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 8. Confusion matrix from the classification model generated by LDA joint with PCA of transformed fingerprint (1800 to 800 cm-1) 

from soybean tissue treated with dicamba DGA, dicamba DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 

14, 21, 28, and 56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba ae ha-1).a,b 

 Actual 

formulation 

BAPMA DGA DGAKAC DMA  

Predicted 

formulation 

 --------------------------------------%--------------------------------------  

BAPMA   32 29 24 22  

DGA  25 33 23 27  

DGAKAC  24 19 36 13  

DMA  19 19 17 38  

Accuracy (%)  32 33 36 38 34.19† 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; DGAKAC, diglycolamine salt with 

potassium acetate; DMA, dimethylamine salt; LDA, linear discriminant analysis; PCA, principal component analysis 
bTransformed spectral data were normalized to the area under the curve, derived to the first Savitzky-Golay derivative, and Savitzky-Golay 

smoothed  

†Weighted average accuracy across all formulation classifications (overall classification model accuracy)  
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Table 9. Confusion matrix from the classification model generated by LDA without PCA of raw fingerprint spectra (1800 to 800 cm-1) of 

soybean tissue treated with dicamba DGA, dicamba DMA, dicamba DGAKAC or dicamba BAPMA, pooled over evaluation timing (7, 14, 

21, 28, and 56 d after treatment) and dicamba concentration (35, 17.5, 8.75, 4.375, 2.1875, 1.09375 g dicamba ae ha-1).a 

 Actual 

formulation 

BAPMA DGA DGAKAC DMA  

Predicted 

formulation 

 --------------------------------------%--------------------------------------  

BAPMA   79 1 3 4  

DGA  11 84 11 17  

DGAKAC  3 7 80 3  

DMA  7 8 6 76  

Accuracy (%)  79 84 80 76 79.64† 

aAbbreviations: BAPMA, N,N-Bis-(3-Aminopropyl) methylamine salt; DGA, diglycolamine salt; DGAKAC, diglycolamine salt with 

potassium acetate; DMA, dimethylamine salt; LDA, linear discriminant analysis; PCA, principal component analysis 
†Weighted average accuracy across all formulation classifications (overall classification model accuracy) 
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Impacts and Benefits to Mississippi Soybean Producers 

 

This research shows that chemometric analyses of soybean and cotton tissue that have been 

damaged by various dicamba and 2,4 D formulations and concentrations and collected at a range 

of evaluation timings may be useful in constructing classification models that can be used to 

identify the specific formulations.  This method for formulation identification provides regulators, 

industry, and producers with a tool to strengthen stewardship programs; providing effective weed 

management, improving farm productivity, and maintaining the environmental conservation. This 

technology could enhance the position of Mississippi as an agricultural leader by exhibiting 

agricultural responsibility. 
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