Cover Crop Management

2023 Row Crop Short Course Mississippi State University

Kip Balkcom

USDA-ARS, Auburn, AL

Agricultural Research Service

Benefits:

Erosion Control

Benefits:

Soil Moisture Conservation

Benefits:

Weed Suppression

	Carbon sequestration rates				
	Cover Crop	0-5 cm	5-10 cm	10-15 cm	Total
Benefits:		kg C ha ⁻¹ yr ⁻¹			
	None	620	134	27	781
	Rye	815	168	37	1020
Soil	Wheat	775	165	38	977
	SED†	88	35	29	133
Organic C	P value	0.0689	0.5734	0.9304	0.1742

High Residue Cover Crop

Management Matters:

 Planting a cover crop does not guarantee adequate cover crop performance.

Background:

- Despite potential benefits, cover crops require a monetary and time investment from growers.
- Common question: How can a grower maximize their return on investment (ROI) for cover crops?
- Ensure cover crop performance is optimal, which is determined by management.

Cover Crop Management Factors:

Planting Date:

- Planting early has proven beneficial to enhance cover crop biomass production.
- Conflicts with fall harvest, particularly cotton.
- Increasing inputs may enhance growth but costs also increase.

Cover Crop Management Factors:

• Seeding Rates – how much to plant?

Rye 30 lb/ac Triticale 60 lb/ac

Cover Crop Management Factors:

• N Fertilizer – how much? Expensive.

No N Fertilizer

Hypothesis:

Intense cover crop management for a late planted rye (cv. 'Wrens Abruzzi') cover crop can produce equivalent biomass levels to an early planted rye cover crop.

Experimental Design:

Split-split plot experiment conducted from 2015 – 2020. Differences significant at $P \le 0.05$.

Planting Date:

- Late October
- Early November
- Late November
- Early December

Balkcom et al. (2023) Agronomy Journal

Seeding Rate:

(4

6

- 60 lb ac⁻¹
- 90 lb ac⁻¹

 $(\mathbf{2})$

1

(10)

11 12

Nitrogen Rate:

- 0 lb ac⁻¹
- 30 lb ac⁻¹
- 60 lb ac⁻¹
- 90 lb ac⁻¹

Wiregrass Research and Extension Center Headland, AL

Biomass Production:

Early Planted Biomass 2.2 times greater for 90 vs 0 lb N ac⁻¹

Late Planted Biomass 2.9 times greater for 90 vs. 0 lb N ac⁻¹, but start and end with less

Additional Inputs could not Overcome Environmental Constraints of Late Planting with Current Cover Crop Genetics

US\$ / 100 lb Biomass:

US\$ / 100 lb Biomass were Similar across N Rates for Early Planting Dates

US\$ / 100 lb Biomass 2.2 times greater for Late Planted compared to Early Planted

N RATE, lb ac-1

Traditionally, Cover Crop N is Limited to Reduce Cost

N Price Scenarios:

N Prices > US\$0.68 lb⁻¹ Increased US\$ / 100 lb Biomass, regardless of Plant Date

Early Planting is Advised as N Price Increases

Soil Carbon

Surface soil effects are most critical.

Soil Organic C for a Fuquay sand: N Rate x Depth P = 0.003

Aboveground Biomass following 90 lb N ac⁻¹ Supplied 2.3 times more C Annually compared to 0 lb N ac⁻¹

Planting Date (P = 0.765) nor Planting Date x Depth (P = 0.083) affected Soil Organic C.

Cover Crop Management Guidance:

- Planting cover crops by Nov. 15 was crucial to enhance rye performance and maximize ROI in the region.
- Nitrogen applications for late planted cereals are risky.
- Cost of additional N for early planted cover crops can be offset by additional biomass production and subsequent benefits.
- Nitrogen fertilizer was required to increase surface soil organic C concentrations on the sand soil type.

Conservation Systems Research

More information available at:

Website: www.ars.usda.gov/sea/nsdl

Subscribe to mailing list: NSDL-Highlights@ars.usda.gov

Contact info: Kip Balkcom USDA-ARS 411 S. Donahue Dr. Auburn, AL 36832 334 - 332 - 7774 kip.balkcom@usda.gov