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ABSTRACT 

 
Allelopathic research in past few decades has shown the feasibility of weeds and plant 
diseases management by allelopathic crop plants, plant residues, cultural 
manipulation, microorganisms as bioherbicides, and rhizobacteria.  Inconsistency 
between the effectiveness of plant growth-promoting rhizobacteria (PGPR) to 
stimulate the plant growth and yield in the laboratory and the field has been reported.  
This inconsistency in the field results from PGPR applications can only be remedied 
through the improved knowledge of interplay between the host and introduced PGPR 
inoculant in the rhizosphere under field conditions.  Application of biofertilizer 
reduced the quantity of chemical fertilizer used for maintaining threshold levels of 
crop productivity.  We hope this review will stimulate further research in a holistic 
approach to solve the agricultural problems and achieve economically profitable and 
environmentally benign sustainable agriculture. 
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1. INTRODUCTION 
 

Allelopathy is a complex interaction among plants, as well as among plants and 
microorganisms, through biochemicals released into the environment either actively (e.g. 
exudates) or passively (e.g. leachates or decay).  Although the phenomenon was noted 
almost since the inception of civilization, for example “soil sickness” following some 
crops, scientific evidence was lacking until Molisch published his book “Der Einfluss 
einer Pflanze auf die andere Allelopathie” in 1937 in which he coined the word 
“allelopathy.”  Allelopathy was generally ignored until 1974 when Rice published the 
book “Allelopathy” based on his research on the succession of vegetation and revived the 
science (175). In his last book “Biological Control of Weeds and Plant Diseases � 
Advances in Applied Allelopathy,” Rice emphasized the biocontrol of agricultural pests 
(178). Rice advocated a holistic approach in the application of allelopathic principles for 
reduction of agrochemical input in farming systems. Allelopathy research over the past 
several decades provides useful information to address some agricultural problems. 
 The goal of allelopathy research is to maximize the utilization of locally available 
natural resources in agriculture and forestry, thereby reducing agrochemical inputs, while 
maintaining economic productivity without degrading the environment, leading to 
sustainable agricultural systems. Strategies of allelopathy research for promoting the low 
agrochemical input agriculture include: (A) Pests management (weeds, plant pathogens 
and other pests) by biological means, and (B) utilization of available natural resources (e.g. 
biofertilizers) to enhance the soil fertility status. In spite of the use of pesticides and other 
management practices, weeds and plant diseases still significantly reduce crop yields and 
thus pest management has a high priority in sustainable agriculture.  Adequate nitrogen 
availability is crucial in crop productivity; an input of 1 kg/ha N-fertilizer can increase 
cereal production by 10 kg/ha. Biological N-fixation (BNF) accounts for 65% of nitrogen 
currently used in conventional farming system and rhizobial-legume systems contribute a 
major portion of BNF. Associative diazotrophs contributes the BNF for particular crops 
with appropriate soil nutrient status. Azolla (aquatic fern)-cyanobacteria symbiosis 
contributes substantial amounts of nitrogen to rice plants cultivated in flooded areas. 
[Biological N-fixation is not discussed here.  The reader is referred to Mallik (130) for 
legume-rhizobium symbiosis and Mallik and Williams (133) for associative N-fixation.]  
Biofertilizer has received great deal of attention during the last 2 to 3 decades owing to 
public environmental awareness, human and live stock’s health issues, fertilizer costs 
(particularly for farmers in developing countries), and growing interest in organic farming 
and greater demand for organic products. Application of biofertilizers can substantially 
reduce or eliminate synthetic fertilizer use, improve soil properties, and promote soil 
microbial balance. 
   No ecosystem can exist without microorganisms.  Plant and microbial interactions 
occurs in the vicinity of roots (rhizosphere). Soil bacteria that aggressively colonize the 
rhizospheres by displacing native root colonizer are called rhizobacteria (191). These 
bacteria sustain high population densities throughout the host-plant’s ontogeny (14). 
Although sustained progress in rhizobacterial research has been made during the last two 
decades, the use of rhizobacteria as plant growth promoters, as well as biocontrol agents 
for plant pathogens and weed control, has not been fully exploited. 
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 This review summarizes the advances made using the allelopathic plants and 
microbes to promote sustainable agriculture. References cited here are exemplary and an 
exhaustive review of literature is not intended. Rather we hope to stimulate further 
research in this area for exploitation of the available plant and microbial resources for use 
in low agrochemical input farming systems. 

 
2. BIOCONTROL OF PLANT PESTS 

 
 Environmental concerns and high pesticide costs have stimulated the research on 
biological (non-pesticide) means for pest control. Agricultural systems must be compatible 
with local ecological, economical and cultural conditions to preserve biotic diversity, 
habitat stability and production sustainability. A very important component of sustainable 
agriculture is the management of plant diseases and weeds, either by reducing pest-
populations or by inducing self-defense systems within the crops.  Plant diseases reduces 
the crops yields by about 20% (152) and weeds by 10-25% depending on the region of 
world (1,6).  Development of herbicide-resistant weed species adds another dimension in 
the difficulty of weed management. World-wide, 156 weed species (94 dicots and 62 
monocots) developed the herbicide resistance (79). Rye grass [Lolium rigidum (Gaud)] has 
evolved resistance to six herbicide classes (164). Pesticides currently used are broad 
spectrum chemicals that affects both targets and non-target species. Although pesticide 
application is crucial for greater crop production, adverse impact of chemically intensive 
agriculture on the environment is a concern. The integration of bio-management of pests 
with local, traditional systems can substantially reduce the quantity of pesticides used and 
help to develop eco-friendly, sustainable farming systems. 

 

2.1.   Weeds 

 Efficient weed management plays a key role in agro-ecosystems.  Allelopathic 
weed management strategies are: the use of allelopathic crops, cultural practices as 
smother crops and their disease causing microbes. Allelopathic research during the last 
half a century has shown the possibility of developing weed resistant crop plants 
(allelopathic crops). Cultivars of several crops allelopathic to weeds have been reported.  
Genetic variability in weed suppressive traits of several crops, including barley (Hordeum 

vulgare L.), sunflower (Helianthus annuus L.), sorghum [Sorghum bicolor (L.) Moench.], 
rye (Secale cereale L.), corn (Zea mays L.), rice (Oryza sativa L.) and wheat (Triticum 

aestivum L.), has been reported (17).   

 
2.1.1.  Allelopathic rice: Allelopathic rice germplasm has been reported from Australia, 
China, Egypt, Korea, Japan and India. Dilday et al. (43) reported that several rice 
germplasms were allelopathic in field tests to duck salad [Heteranthera limosa (SW) 
Wild.], redstem ammania (Ammannia coccinea Rottb.) and barnyardgrass [(Echinochloa 

crusgalli (L.) Beauv.]. The allelopathic rice accessions produced 2 to 3 times more root 
biomass than the non-allelopathic accessions. The yield reduction in barnyardgrass 
infested soil was 37% for allelopathic rice accessions compared to 60 to 68% reduction in 
yield of the non-allelopathic rice accessions.  After comparing physiological performance 
of allelopathic and non-allelopathic rice cultivars, it was concluded that there was no extra 

* Common and scientific names for weeds have been standardized using the Weed Science Society of America's 
Composite List of Weeds found at http://www.wssa.net/Weeds/ID/WeedNames/namesearch.php.  Accessed 
October 28, 2008. 
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physiological cost to the allelopathic rice cultivars for weed-suppression (157,158,221).  
Allelopathic rice cultivars are competitive against weeds for light and nutrients, and have 
other characteristics including greater plant height, more rapid growth, active rooting and 
larger biomass.  These are in general the characteristics of allelopathic crop plants (202).  
Song et al. (199) reported that root exudates of allelopathic rice cultivars at different 
phenological stages contained benzene and phenol derivatives, benzoic acid, phthalic acid 
and several long chain fatty acids. The root exudates containing these allelochemicals 
significantly reduced the barnyardgrass height, tiller number and dry weight when 
compared with non-allelopathic varieties.  Allelopathic rice cultivars exuded 3-hydroxy 
benzoic acid (HBA), 3,4–dihydroxydiscinnamic acid (3,4-DHHCA), and 4-
hydroxyphenylacetic acid when grown in flooded or upland conditions, while 4-hydroxy 
benzaldehyde (4-HB), 3 hydroxy,4-methoxybenzoic acid (3-H, 4-MBA), and 4-
hydroxycinnamic acid (4-HOA) were exuded only when the rice was grown in upland 
conditions (136). It is suggested that these allelochemicals contributed to duck salad 
growth inhibition. Allelopathic inhibition of barnyardgrass and duck salad growth by rice 
is genetically controlled and varies among cultivars (92). 

 
2.1.2. Wheat and Barely: Differential allelopathic activity of wheat varieties against rye 
grass has been reported suggesting that wheat allelopathy is genetically controlled 
(231,232).  After identification of the gene, or genes (multiple gene involvement is most 
likely), it might be possible to incorporate the allelopathic trait by gene transfer to another 
desirable wheat cultivar.  Hashem and Adkins (78) found a wild wheat (Triticum 

speltoides L.) accession that suppressed the wild oat (Avena fatua L.). Copaja et al. (40) 
reported wide variation in production of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-
benzoxazin-3-one) in Chilean wheat cultivars (T. aestivum L. and T. durum Desf.). Similar 
variation in gramine content in barley was reported (127). The alkaloids (gramine and 
hordenine) from a barley cultivar inhibit white mustard (Sinapis alba L.) growth. 
Additionally, hordenine affects growth of army worm (Mythimna convecta), a noxious 
pest of barley, and a fungal pathogen (Drechslera teres) (126). Fay and Duke (54) reported 
differential allelochemicals production in common oat (Avena sativa L.) accessions; four 
of 3000 accessions screened produced 3-times as much scopoletin (6-methoxy-7-hydroxy 
coumarin) as a standard cultivar. 

 
2.1.3.  Cucumber: Putman and Duke (166) reported allelochemicals variations among the 
cucumber (Cucumis sativus L.)  cultivars in 1974.  Coupling the natural variation of these 
compounds and their genetic manipulation into crop plants provides a means of weed 
suppression that will reduce our dependence on chemical weed control.  The use of 
allelopathic crop plants as cover or smother crops provides a further means of non-
chemical pest control. 

 

2.1.4.  Cover or Smother Crops: Cover or smother crops are grown in the field and 
mowed or incorporated into the soil prior to sowing of the main crop. Besides suppressing 
weed growth, cover crops increase organic matter content, add soil nutrients, improve soil 
physical properties, and reduce soil erosion.  Hairy vetch (Vicia villosa Roth) is a popular 
cover crop, due to its rapid growth and allelopathic potential, and is used both in grain and 
vegetable production. Hairy vetch as a cover crop reduced weed density by 70% and 
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biomass production by 50 to 70%, compared with fallow land (203). Fujii (61) reported 
that weed suppression by hairy vetch is comparable with rye and oat (Table 1). Some most 
efficacient cover crops are buckwheat (Fagopyrum esculentum Moench), foxtail millet 
(Setaria italica (L.), rye, sorghum, alfalfa (Medicago L.), sunflower and cruciferous plants, 
(56,118,119,148,156,165, 190,215,229). 
  
Table 1. Effects of fall-sown cover crops on weed suppression.1 

Cover crop Weed Contro (%) Biomass (g/m2) 

Cereal rye 99 1182 
Wheat 99 1751 
Oat 99 1210 
Barley 99 1173 
Hairy Vetch 99 994 
Birdsrape mustard 97 834 
White mustard 95 416 
Alfalfa 77 384 
Rice straw mulch 87 1000 
Herbicide Treatment 
(benthiocarb + prometrin 40 kg/ha) 

91                 - 

1Data are pooled from several experiments done in Japan in 2001 (61). 

 
 Evaluation of weed suppressive ability of different summer and winter crops in 
India showed that the order of weed suppression for summer crops was: pearl millet 
[Pennisetum glaucum (L.) R. Br.] > maize > sorghum > cowpea [Vigna unquiculata (L.) 
Walp], while the order of suppression for winter crops was: berseem (Trifolium 

alexandrinum L.) > oat> lentil (Lens culinaris Medic.)> wheat (149). Although all 13 pearl 
millet genotypes reduced the weed population, which included Chinese tallowtree 
(Trianthema portulacastrum L.) and  pigweed species (Amaranthus sp.), nine of the 
genotypes significantly reduced total weed population and one genotype (HHB 67) 
suppressed 75%  of the Chinese tallowtree population when compared to the control.  
Similar variability in the suppression of weed growth by Indian mustard [Brassica juncea 

(L.) Czen.] and rapeseed (Brassica napus L.) genotypes was reported by the same author. 
All the accessions of Indian mustard suppressed common lambsquarters (Chenopodium 

album L.) and littleseed canarygrass (Phalaris minor Retz.) growth by 80 %. These 
examples suggest that selection of crop genotypes for weed suppression may be 
worthwhile. 

 

2.1.5. Crop Rotation: The practice of traditional crop rotation declined with the onset of 
industrial agriculture. However, it is being reconsidered for the development of 
environmentally sound and sustainable farming systems. Rotating crops with different 
planting dates and growing periods reduce the population density of weeds. Additional 
benefits of well designed crop rotation include reduction of pathogens, insect populations, 
and weed seed banks. Crop rotation is an important tool in reducing weed seeds in the soil 
and seedling development (122).  The population density of the downy brome (Bromus 

tectorum L.) remained low and stable when winter wheat was rotated with rapeseed, but 
the weed population increased when winter wheat was grown continuously (24).  
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Schreiber (190) reported that soybean-wheat-corn rotation in no-till or reduced tillage 
significantly reduced giant foxtail (Setaria faberi Herrm.) population in a comparison to 
continuous corn crop. 

 

2.1.6. Companion Cropping: Companion cropping was more effective in reducing weed 
populations than a crop monoculture.  Companion crops utilize the available resources 
more efficiently and reduces the competition from the weeds.  Putnam and Tang (167) 
reported a few examples from the Russian literature on growth promotion due to 
companion seeding. Co-seeding legumes in a corn crop promoted corn yield.  White 
mustard and wild European heliotrope (Heliotropium europaeum L.) co-planting enhanced 
the yield of several crops and reduced weed population and insect pests. Intercropping 
cereals with forage legumes such as red clover (Trifolium pretense L.) or alfalfa was a 
common practice in the U.S. for suppression of cool season weed couch grass [Elytrigia 

repens (L.) (50). 
 
2.1.7. Crop Residues: Application of crop residues for weed suppression has been 
recently reviewed (113,114,148). The allelopathy literature provides extensive information 
on the potential of sorghum, rye, vetch, crucifers, and sunflower residues to suppress weed 
growth. Alfalfa pellets (made from alfalfa shoots, 15g/pellet) used as feed for livestock 
when applied to rice fields at 100kg/1000 m2 significantly reduced weed biomass when 
compared to the control and suppressed the common paddy weeds like watergrass 
[Echinochloa oryzicola (Vesinger) Vesinger], monochoria [Monochoria vaginalis (Burm. 
f.) Kunth] and smallflower umbrella sedge (Cyperus difformis L.) (235).   The pellet 
application was as effective as an herbicide treatment and had no negative impact on rice 
growth. Incorporation of the pellets at 1-2 t/ha within 5 days after rice transplantation was 
recommended for maximum weed suppression. However, application of the pellets at 1 
t/ha may not be feasible in practical terms (235).  Application of alfalfa residues was 
reported to reduce redroot pigweed (Amaranthus retroflexus L.), common lambsquarters, 
crabgrass (Digitaria sanguinalis Haller), and velvetleaf (Abutilon theophrasti Medik.)  
growth (37). Dyke and Liebman (49) found that incorporation of crimson clover (Trifolium 

incarnatum L.) incorporated into the soil reduced biomass production of common 
lambsquarters but had little effects on the growth of sweet corn. Soil incorporation of 
white mustard residues before planting potato (Solanum tuberosum L.) significantly 
reduced weed density and weed biomass (29). A similar effect was reported in a pea 
(Pisum sativum L.) production system (2).  A few weeks between residues application and 
planting is desirable to allow the toxicity of residues to decline before crop seed 
germination and seedling establishment, which reduces the chance of toxic affects on the 
crop plant (41).  Velvet bean [Mucuna pruriens var. utilis (L.) DC] has a considerable 
potential as weed suppressor and contains the allelochemical L-3,4-dihydroxy-phenyl 
amine (L-DOPA) (60).   Buckwheat has been reported to be an effective weed suppressor. 
Applied at 1-2 t/ha buckwheat pellets significantly reduced Canada thistle [Cirsium 

arvense (L.) Scop.], quackgrass, barnyardgrass and monochoria emergence in field rice, 
but did not affect the crop (234).  

Weed suppression has also been reported with rice straw and rice residues. 
Several phenolics and momilactones contained in rice straw are presumed to 
synergistically contribute to the weed suppression (25,177). For example, rice flatsedge 



Sustainable agriculture with allelopathy 

 

7 

(Cyperus iria L.) suppression in fields mulched (amended) with allelopathic rice residues 
and hulls was comparable with weed suppression resulting from a herbicide application 
(123). In another study, residues of an allelopathic rice cultivar applied at 5t/ha and 
incorporated at a depth of 5 to 6 cm reduced the population density and biomass of 
junglegrass [Echinochloa colona (L.) Link], monarch redstem (Ammannia baccifera L.), 
A. multiflora (Roxb.) and gulf leaf-flower (Phyllanthus fraternus Webster) (105).  
Inhibition of several common weeds in Vietnam rice fields was reported by incorporation 
of residues of Alocasia cucullata (Lour.) G. Don, Sophora japonica L., hairy beggarticks 
(Biden pilosa L.) and Jerusalem artichoke (Helianthus tuberosus L.) (Table 2) (84, 106). 

 
Table 2.. Effects of incorporation of plant residues in rice fields on weed control and crop yield as 

compared to a standard herbicide treatment.1 
 

Species Weed reduction (%) Yield increase (%) 

Ageratum conyzoides L. 81 21 
Bidens pilosa L. 82 23 
Blechnum orientale L. 75 23 
Leucaena glauca (Lam.) de Wit 86 23 
Morus alba L. 73 23 
Tephrosia candela L. 92 23 
Euphorbia hirta L. 88 23 
Eupatorium cannabinum L. 76 23 
Herbicide treatment 78 12 
1Modified from Hong et al. (84); 2Pyributicarb (5 L/ha) and butachlor (600g/L) 

 
Incorporation of plant residues produces considerable weed suppression that can 

lower crop production cost and reduce degradation of the environment. Further research 
efforts are needed to discover local plants that effectively suppress weeds.  Foley (56) 
suggested that breeding/genetic manipulation can enhance the weed suppressive capacity 
of cover crops. It is feasible to transfer gene/genes responsible for synthesis of 
allelochemicals to desirable crop cultivars. 

 
2.1.8. Microbes: In addition to the use of allelopathic crops, cover crops and residues to 
control or suppress weeds, the use of rhizobacteria and plant pathogens in weed 
management has received attention.  Several reviews on using rhizobacteria and plant 
pathogens as bioherbicides are available (81,98,99,204). A few examples of successful 
weed suppression by rhizobacteria and plant pathogens are presented below. 
 

2.1.8.1. Rhizobacteria: The downy brome, a common grass weed in wheat, causes an 
estimated $300 M annual loss in crop yields. Of more than 1000 pseudomonad isolates 
tested from winter wheat and the downy brome rhizoplane only two isolates suppressed 
the downy brome population (31%) and growth (53%) compared to the control with a 
concomitant 18 to 35% yield increase (97). In a controlled environment, the greatest 
downy brome suppression was found at cool (10 to 18 ○C) and moist conditions (93).  The 
downy brome is a cool season annual weed and establishes in wet autumn. Field 
application of the bacterium in autumn should result in biocontrol of the weed. Soil 
applied Pseudomonas fluorescens (strain D7) and Ps. syringae (strain 2V19) in naturally 
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infested wheat fields suppressed weed growth by 25% and enhanced yield by 27% (96). 
An active principle isolated from cell-free or whole broth of Ps. fluorescens (strain D7) 
completely inhibited the downy brome at a concentration of 1 mg total dry wt/L agar.  
Analysis showed the active principle consisted of chromopeptides and other peptides, fatty 
acid esters, and a lipopolysaccharide matrix. However, separation of the components 
resulted in complete loss of inhibitory effect (75). Gealy et al. (64) reported that 
metabolites of Ps. syringae (strain 3366), grown aerobically as shake culture, inhibited the 
downy brome and 10 other plant species tested in soil and under field conditions. A crude 
ethyl acetate extract of the culture significantly suppressed the downy brome seed 
germination and root and shoot growth, but had little effect on wheat germination or 
growth. Analyses of the ethyl acetate extract revealed phenazine-1-carboxylic acid, 2-
amino phoxazone and 2-amino phenol. The phenazine-1-carboxylic acid, a major 
component of the extract, suppressed the downy brome root growth by 99% at 5.7 mg/L. 
The presence of these compounds in the soil was confirmed by thin-layer chromatography 
suggesting that weed suppression was due to the phytotoxins produced.  The toxin 
produced in the culture broth of Ps. syringae might be a source for the development of a 
bioherbicide. 
 Kennedy et al. (98) tested the inhibitory effects of Ps. fluorescens (strain D7) 
using both plant-soil and agar plate bioassays on 42 selected monocot and dicot weeds 
common in western and mid-western U.S.  Among the test plant species, including the 
downy brome accessions, tested using the plant-soil bioassay, Ps. fluorescens inhibited the 
germination and growth of most weed species, but had no effect on wheat. These results 
indicate that Ps. fluorescens D7 may have the potential as a bio-control agent for the 
downy brome grass without any effect on non-target species.  
 Strains of Ps. putida (FH 160), Stenotrophomonas maltophilia (FH 131) and 
Enterobacter taylorae (FH 650) suppress the downy brome in wheat fields. The method of 
application of rhizobacterial biocontrol agent is an important consideration to consistently 
obtain effective weed suppression. Of the three methods tested, soil incorporation of 
inoculants into the soil profile at a depth of 10 to 15 cm produced consistent and 
significant weed suppression, diminishing its competitive ability than wheat seed treatment 
with inoculants or their soil surface application (137). Soil incorporation of bacteria 
produced consistent colonization of weed rhizosphere. The authors also suggested that 
incorporation of inoculants 10 to 15 days before the crop sowing would provide more 
effective weed suppression.    
 Field emergence of green foxtail [Setaria viridis (L.) Beauv.], a common world-
wide weed, was suppressed with a granulated 'pesta' formulation (oat flour and maltose; 
20% wt/wt) of Ps. fluorescens (strain BRG 100) (42).   The 'pesta' product containing the 
bacterium was made into granules and had a shelf-life of 32 days. In field study, this 
product containing the pathogen suppressed the emergence of green foxtail by 90% over 
an 8-weeks period.  

 
2.1.8.2. Pathogens: Besides rhizobacteria or their active component(s), pathogens also 
provide weeds control.  For example, woollyleaf brusage [Ambrosia grayi (A. Neis.) 
Shinners] can be controlled by Ps. syringae pv. tagetis (195).  An inundative single 
application of pathogen at a minimum of 104 colony forming units/ml in field tests 
produced sufficient disease symptoms (systemic chlorosis) to suppress the weed. An 
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application of the pathogen in April, May or June was effective in suppressing the weed, 
but an application in July and August was not. The weed density was lower if applied in 
April than in May or June. It was suggested that the pathogen be used with herbicide to 
reduce the amount of chemical needed for weed control.  
 Ps. syringae pv. tagetis is also a pathogen of Canada thistle, a  perennial weed 
that is difficult to control in soybean.  Of the three application methods tested, an 
important consideration in delivering the bioagent under field conditions, a backpack 
sprayer was found to be the best method to apply the organism (72). Two applications 
[(each of 700 L/ha) of the inoculant containing 109 colony forming unit/ml plus Silwet L-
77 (0.3% v/v)] provided a 67% increase in disease incidence (apical chlorosis) 4 weeks 
after treatment. There was an 81% reduction in flower buds and 20% reduction in shoot 
survival in the first year, but no effective weed control was observed in the second year. 
Silwet L-77, an organosilicone surfactant was required to facilitate Ps. syringae 
penetration into the leaf.  A control method that only provides reduction in seed production 
is not an acceptable strategy for biocontrol of Canada thistle. The authors suggested that 
multiple inundative applications beginning when plants are young could be an effective 
control strategy. Another suggestion was enhancement of tagetoxin production, which is 
the primary compound causing the disease and blocking chloroplast biogenesis in 
developing leaves. 
 As shown in the previous example, the leaf wetness has a great effect on the 
efficacy of a pathogen used as a biocontrol agent.  A wet or dew period is often required 
after application to insure fungal spore germination and penetration into the host plant cell.  
Tichich et al. (206) showed that the inoculum application during a wet period produced a 
greater population of bacterial cells inside the Canada thistle leaves than when the 
application was made during a dry period.  As indicated by Auld et al. (11) product 
formulation is a constraint in the commercial development of many potential bioherbicides 
due to the fungi's dependency on dew or wet conditions limits their efficacy under dry 
conditions. 
 The potential of cyanogenic pseudomonads for weed suppression has been 
indicated by several authors.   Pseudomonads (common rhizobacteria) are known for their 
ability to produce HCN, but the quantity produced varies widely (trace to >30 η moles/mg 
cellular protein) among species and strains of the bacterium. Significant growth inhibition 
(77 to 85%) of roots of lettuce (Lactuca sativa L.) and barnyardgrass by selected strains of 
Ps. fluorescens and Pseudomonas sp. was demonstrated (115).  HCN evolved at less than 
5 η moles/mg cellular protein is ineffective in inhibition of seedling growth. Selected 
cyanogenic pseudomonads applied inundatively to fields have potential to inhibit weed 
seedling emergence and growth, which would reduce weed competition and minimize the 
herbicide application. Rhizobacteria can also be manipulated to increase HCN production 
by addition of glycine (a precursor of HCN) to the soil.   
 Scentless chamomile (Matricaria perforata Merat), a pernicious weed in western 
Canada, is difficult to control because of its natural high tolerance to commercial 
herbicides. Colletotrichum truncatum (Schwein) is a host specific plant pathogen of the 
weed. A broadcast application of the pathogen at 200 L/ha containing a minimum of 50 X 
106 spores/ml and at a dew point of 20 to 25 ○C was reported to be conducive to develop 
infection and disease development resulting in significant weed suppression (69). 
However, a dew point of 20 to 25 ○C is uncommon in the western Canadian prairie. 
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Therefore, it was concluded that the pathogen could be used as a component in integrated 
weed management, supplemented with a herbicide at a reduced dose or cultural/ 
mechanical control measures.   
 Chin (35) found that the fungal pathogens Exserohilum monocerus and 
Cochliobolus lunatus were effective for controlling barnyardgrass; an application of the 
fungi completely suppressed barnyardgrass emergence in the rice fields. Similarly, Thi et 

al. (205) reported that the fungal pathogen Setosphaeria rostrata was effective in 
suppressing Chinese sprangletop [Leptochloa chinensis (L.) Nees], which is a common 
weed in Vietnam rice production. A spray of the fungal spores at 106 / mL within 7 to 21 
days after sowing the crop almost completely suppressed the weed. 
 Commercial products are being developed for three cosmopolitan weeds.  
Ragweed partheium (Parthenium hysterophorus L.), is highly invasive and a difficult 
weed to control in pastures and cultivated fields in India, Australia and other regions. A 
fungal pathogen Puccinia melampodium has excellent potential as a bioherbicide for the 
weed and it is being further tested by CAB Bioscience (Ascot center), U. K. (192).  
Barnyardgrass is a serious weed of world wide occurrence. Gohbara (68) reported that the 
fungal pathogen E. monoceras has potential to be marketed in Japan as a bioherbicide for 
barnyardgrass control in rice fields. This fungus is also used in China and Vietnam, while 
Colletotrichum graminicola is used in South Korea for barnyardgrass control.  
Xanthomonas campestris (trade name “Camperico”) is marketed for annual bluegrass 
control (Poa annua L.) in golf courses in Japan.  Another area where allelopathy has been 
successfully used is in the control of parasitic plants, where non-host plants are used to 
stimulate seed germination, or germination stimulants are applied to the soil. 

 
2.1.9 Parasitic Weeds:  Trap crops are an easy and effective method to control parasitic 
plants as Striga, Orobanche, Cuscuta and Alectra.  Another strategy is to use catch crop 
that stimulates the germination of parasitic plant seeds and subsequently become 
parasitized. The parasitized plants are then destroyed. Orobanche and Cuscuta are problem 
parasitic plants in much of South-Central Asia and the sowing of a mixture of trap and 
catch crop seeds is a recommended strategy for their control (36, 168).  Other control 
methods are based on adding germination stimulants to the soil.  
 Striga produces large numbers of seeds and chemical control of these plants is 
ineffective because their seeds remain dormant in the soil for several years.  An attractive 
control strategy is application of chemical stimulant e.g. strigol to the field prior to sowing 
the crop in order to induce the parasitic seeds to germinate -- “suicidal germination” -- in 
the absence of a host (133). Another method is to inject ethylene gas into the soil as a 
germination stimulant.  This is an excellent method of control, successfully used in the 
USA, but ethylene gas injection is expensive and hazardous and may not be suitable in 
developing countries. Three strains of Ps. syringae pv. glycinea are reported to synthesize 
large amounts of ethylene gas and are effective in promoting seed germination of several 
species of Striga (20).  
 Another strategy is to reduce germination of the parasitic weed seeds. Yonli et al. 
(239) found that 14 indigenous Fusarium isolates reduced seed germination of Striga 

hermonthica that causes severe damage to sorghum crops. The Fusarium isolates were 
grown either on sorghum compost or sorghum chopped straw and the inoculum was soil 
incorporated to a 5 or 10 cm depth. The isolates grown on compost substrate were more 
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effective in reducing Striga seed germination, biomass and vigour than those grown on 
chopped straw substrate.  In addition, the inoculum applied at the 5 cm depth was more 
effective than at 10 cm depth; all the isolates were effective in controlling Striga. 
 Several fungal plant pathogens have been found suitable as bioherbicide agents 
against important weeds.  Examples of commercial mycoherbicides are 'Devine' containing 
Phytophthora palmivora for strangler vine [Morrenia odorata (Hook and Arn.) Lindlo.] 
control in citrus (102,179);  'Collego' containing Colletotrichum gloeosporioides f. sp. 
aeschynomene causing anthracnose  to control  northern jointvetch [Aeschynomene 
virginica (L.)] in rice and soybean [Glycine max (L.) Merr.] (28,196); and 'BioMal' 
containing C. gloeosporioides f.sp. malvae gloeosporioides  for round-leaved mallow 
(Malva pusilla Sm.) control in small grains and lentils (128). These examples and those 
given in Table 3 indicate the potential of mycoherbicides. 
  
Table 3.  Fungal plant pathogens with the potential for common weed suppression. 
 
Weed Pathogen Reference 
Common lambsquarters (Chenopodium album L.) Ascochyta caulina 

Cercospora chenopodii 

C. dubia 

 187  

Giant ragweed (Ambrosia trifida L.) F. lateritium  9  
Johnsongrass (Sorghum halepense) Sphacelotheca holci  134  
Knapweed (Centaurea diffusa Lam.) Puccinia jaceae  223  
Large crabgrass [Digitaria sanguinalis (L.) Scop.] Pycularia grisea  9  
Prickly sida (Sida spinosa) Fusarium lateritium  220  
Purple nutsedge (Cyperus rotundus L.) Phyllachora cyperi  9  
Roundleaf mallow (Malva pusilla) C. gloeosporioides  144  
Skeleton weed (Chondrillina juncea) Puccinia chondrillina  77  
Velvetleaf (Abutilon theophrasti) Colletotrichum coccodes  82  
Water hyacinth [Eichornia crassipes (Mart.) Solms] Cercospora rodmanii 

Alternaria eichorniae 

 39  
 147  

 

2.2.  Diseases   
 
2.2.1.  Allelopathic crop plants: Allelopathic crops not only can be used in weed 
control, but also their leachates, exudates and residues inhibits the plant pathogens i.e. to 
control plant diseases.  For example, Ramirez-Villapudua and Munneche (169) reported 
that dried cabbage (Brassica oleracea L. var. capitata) incorporated into the soil 
significantly reduced the yellow cabbage pathogen (F. oxysporum sp. conglutinan) 
population and produced near disease-free cabbage plants. Methanethiol, dimethyl sulfide 
and dimethyl disulfide from the residues were suggested to have contributed to disease 
suppression. Dried residues of cruciferous plants (cabbage, mustard and turnip [Brassica 

septiceps (L.H. Bailey)] as mulch significantly reduced the root rot pathogen 
(Aphanomyces euteiches) in peas (160).  Reeleder et al. (172) reported that a combination 
of white pine (Pinus strobes L.) and red pine (P. resinosa Aiton) bark mulch suppressed 
the   damping-off caused by (Rhizoctonia solani) in ginseng (Panax quinquefolius L.) 
under field conditions.  White pine bark mulch also reduced the weed population in the 
early stages, improved root shape and supported larger plant population of ginseng crop 
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compared with commonly used oat mulch. Cedar (Cryptomeria japonica D. Don.) and 
Hinoki cypress (Chamaecyparis obtuse Endl.) barks decompose very slowly in the field 
and therefore, are unsuitable as mulch. However, the Chinese use the bark fibres for 
raising seedlings in the green house, and no soil borne root disease was found (241).  The 
fibers contain essential oils soluble in ethanol that inhibits Ps. solanacearum, F. 

oxysporum, and F. lycopersicum growth, which suggests that these compounds contribute 
to disease control (241). 
 

2.2.2 Microorganisms/rhizobacteria:   Increased interest in microorganisms as safe and 
effective agents for plant disease control is evident from the number of books, reviews and 
symposia (34,95,185,219,225). An example of a biofungicide based on Streptomyces sp. is 
“Mycostop.”  Developed in Finland (1990) it is registered in USA and several eastern 
European countries as biofungicide against damping-off diseases (F. oxysporum and R. 

solani) and partial control of grey mold (Botrytis cinerea) infection of strawberry 
(Fragaria L.) flower.  Recommended methods of application are seed treatment, drenching 
the substrate and drip irrigation (142,143). 
 The concept of using rhizobacteria as biocontrol agents for plant disease control 
was first demonstrated by Kerr (103) who showed that peach seeds inoculated with 
Agrobacterium radiobacter var. radiobacter (strain 84) significantly suppressed the peach 
[Prunus persica (L.) Batsch] crown gall in soil infested with the crown gall pathogen A. 

radiobacter var. tumefaciens. This was the first bacterium used as a biocontrol agent to 
control a specific plant disease, as well as the first commercially produced bacterial agent 
for plant disease control (104). The disease control mechanism was suggested to be due to 
the production of a new kind of antibiotic (nucleotide bacteriocins) that selectively inhibits 
most pathogenic agrobacteria. 

 
2.2.2.1 Crop production:  Wheat seeds inoculated with Ps. fluorescens (strain13-79) 
suppressed 'take-all' pathogen (Gaeumanomyces graminis var. tritici) of wheat in naturally 
infested field soil. Fewer plants in the inoculated fields developed foliar symptoms of 
disease and showed less root infection resulting in 27% wheat yield increase. Wheat 'take-
all' suppression was suggested to be related to increased level of 2,4-
diacetylphloroglucinol or phenazine-1-carboxylate produced by the introduced inoculants 
(226).  Ps.  fluorescens (strain 2-79) was inhibitory in vitro to wheat take-all (76,226,227). 
Ps. corrugata (strain 2140) also suppresses the wheat take-all (G. graminis  var. tritici) in 
vivo at 15 ○C and inhibits the pathogen in vitro in the range of 10 to 15 ○C (184). 
 Wen-Hua et al. (228), after screening hundreds of bacterial isolates, found that a 
strain of Bacillus subtilis (B-908) was antagonistic to R. solani that causes rice sheath 
blight disease. There was no lodging of rice plants in field plots treated with the strain B-
908, compared to severe lodging in untreated plots. The same isolate also suppressed the 
'sharp eye spot' on wheat seedlings caused by R. cerealis in pot experiments. 
 Cotton seeds treated with Ps.  fluorescens (pf-5) suppressed cotton damping-off  
and root rot caused by Pythium ultimum and/or R. solani;  pyoluteorin and  pyrrolnitrin 
were demonstrated to be antibiotics involved in the disease suppression (85,86).  In field 
experiments, Reddy et al. (170) reported that two Ps. fluorescens strains (63-49 and U-14) 
consistently and effectively suppressed the damping-off caused by R. solani in canola, 
when seeds were treated with either a peat-based or liquid inoculant before planting.  
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While testing bacterial strains of Ps. fluorescens  and Bacillus spp. against damping-off  
(R. solani) on the  common bean (Phaseolus L.), Andrade et al. (8) found that Bacillus sp. 
(strain P183) was highly effective in suppressing the disease under field conditions and 
produced better control than a fungicide treatment (quintozene). 

 
2.2.2.2 Forestry:  Fungal root disease causes considerable damage in conifer nurseries and 
on reforestation sites. Out of the 500 isolates tested, Reddy et al. (171) reported that 
application of Burkholderia cepacia (strain RAL3) and Ps. fluorescens (strain 64-3) 
reduced the root disease in white spruce [Picea glauca (Moench) Voss] seedlings caused 
by F. oxysporum.  This organism also improved the seedlings health when seedlings were 
planted in soil contaminated with Fusarium sp. and Pythium sp. in a nursery situation, as 
well as improved the survival of bare roots white spruce seedlings planted in reforestation 
sites. The conifer seeds were inoculated with the bacterial suspension in a liquid 
formulation. Both strains were consistently effective as biocontrol agents in reforestation 
trials, and strain RAL3 maintained acceptable population density for a year when its 
commercial formulation was stored at 5 ○C. A total of 25 microorganisms have been 
registered with the U.S. Environmental Protection Agency as biopesticides against plant 
diseases (57).  Other examples of rhizobacteria that exhibit disease control traits are 
presented in Table 4. 

 
Table 4.  Other examples of rhizobacteria with potential to control root disease 
 

Rhizobacteria Pathogen Host Reference 
Arthrobacter sp. Fusarium oxysporum  Carnation  197  
Serratia liquefaciens F. oxysporum Carnation  198  
Hafnia alvei F. oxysporum Carnation   198  
Bacillus sp. Gaeumanomyces graminis Wheat  30  
Pseudomonas sp. Erwinia carotovora Potato  174  
Ps. fluorescens F. oxysporum Radish  121  
Ps. fluorescens Ps. syringae pv. phaseoli Bean  4  
Ps. fluorescens Ps. syringae pv. pisi Pea  5  
Ps. fluorescens R. solani, Py. ultimum Cucumber  238  
Ps. putida Colletotrichum orbiculare Cucumber  125  
Ps. cepacia R. solani Cotton  163  
B. subtilis  R. solani Cotton  71  
Burkholderia cepacia  F. oxysporum Corn  21  
Rhizobacteria Bacterial blight Rice  216  
Bacillus sp. Phytophthora cactorum Apple  74  

 
 2.2.3 Induced resistance:  Research over the last two and half decades indicates that 
plants possess latent defensive mechanisms that become activated following exposure to 
live/killed microbes (18,201).  This immunization or induction of systemic disease 
resistance (ISR)  was first reported  by  Scheffer (188) when he observed  that prior 
inoculation of elm (Elmus L.) trees with four selected fluorescent pseudomonads led to 
significant reduction in systemic foliar Dutch elm disease (Ophiostoma ulmi). Induced 
systemic resistance has been reported in > 25 crops (116,212). The biochemical changes 
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after stress are accumulation of chitinases, glucanases, peroxidases, phytoalexins 
(138,213). 
 Wei, Kloepper and Tuzun (224) demonstrated that cucumber seeds inoculated 
with Ps. putida (strain 89B-61), Serratia marcescens (strain 90-166) and Flavomonas 

oryzihabitans (strain INR-5) induced resistance against 'angular leaf spot' (pathogen = Ps. 

syringae pv. lachryman) and anthracnose (pathogen = Colletotrichum orbiculare). All 
three rhizobacterial strains significantly reduced the foliar lesion diameter. Two strains 
(89B-61 and 90-166) significantly increased the cucumber yield over the control. 
Application of selected strains of Ps. putida and S. marcescens induced the resistance 
against fusarium wilt in cucumber (125).  Increased level of phytoalexin was reported in 
carnation, inoculated with Pseudomonas sp. (strain WCS 417s), which induced resistance 
against root rot by F. oxysporum (214). 
 Similarly, Duijff et al. (48) reported seed inoculation with Ps. putida (strain 
WCS358r) significantly reduced the fusarium wilt in carnation (Dianthus caryophyllus L.) 
caused by F. oxysporum f. sp. Dianth.  In this case, siderophore (iron chelating enzymes) 
mediated competition for iron was suggested as the mechanism of disease suppression. 
Siderophore producing rhizobacteria can bind most of the available iron in the rhizosphere 
preventing pathogens from proliferation due to lack of nutrient (151). A mutant strain of 
Ps. putida that over-produces siderophores was more effective to control tomato (Solanum 

lycopersicum L.) root rot caused by F. oxysporum than wild Ps. putida. 
 Hynes and Lazarovits (87) recorded a higher level of PR-(pathogen related) 
protein in bean and tomato leaves following seed treatment with a rhizobacterium. 
Increased peroxidase activity of root surface (3), and lignification of stems/leaves in bean 
(7) and potato (59) have been recorded following root colonization by rhizobacteria. These 
reports indicate that root/seed colonization by rhizobacteria elicits physiological changes 
resulting in ISR in host plants. 
 Fusaric acid is a common compound in Fusarium infection and its ability to 
hydrolyze the acid is the mechanism that regulates the infection in several plants (209). 
Several rhizobacteria, as Ps. cepacia and Ps. solanicearum, are capable of hydrolyzing 
fusaric acid.  Frindlender et al. (58) reported that 1,3 glucanase from a strain of Ps. 

cepacia damaged the fungal mycelia and also effectively reduced the disease onset by R. 

solani, Sclerotium rolfsii and Pythium ultimum. A genetically manipulated strain of Ps. 

fluorescens that produces pyoluteorin and 2,4-diacetylphloroglucinol effectively protects 
the cucumber plants against Pythium ultimum  infection (189).  Voisard et al. (217) 
demonstrated that Ps. fluorescens (strain CHAO) inoculation could suppress tobacco 
(Nicotiana L.) black root rot (pathogen = Thielaviopsis basicola); disease resistance was 
associated with increased HCN production.  Asparagus (Asparagus officinalis L.) root 
growth increased 30% in controlled conditions when 3 week-old seedlings were dipped in 
culture filtrate of Ps. putida isolated from asparagus rhizosphere (240). The isolate was 
antagonistic to F. moniliforme and the active principle in the filtrate was a mixture (45:55) 
of succinic and lactic acids. Seedlings treatment with 1:1 mixture of acids at 10 ppm 
enhanced the root growth upto 40%. The authors suggested that beneficial effect of some 
rhizobacteria might be due to secretion of organic acids, and that these acids might reduce 
pathogen population density resulting in plant growth promotion. Kumar and Dube (117) 
reported that bacterization of chick pea (Cicer arietinum L.) and soybean seeds with 
fluorescent Pseudomonas sp. (siderophore producing, isolated from tomato rhizosphere) 
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increased the seed germination, growth and yield of both plants. Inoculation of chick pea 
reduced the wilt disease by 52% in wilt-sick soil. Potato seed pieces inoculation with 
selected strains of Ps. fluorescens and Ps. putida enhanced the potato yield and it was 
suggested that the yield increase was due to suppression of HCN producing microbes by 
the introduced inoculants (112).  
 Disease suppression invariably enhances the host plants growth and yield. It is 
neither necessary nor even desirable to try to distinguish between plant growth promoting 
and disease suppressing rhizobacteria.  Although ISR has been demonstrated in several 
crop plants under field conditions, its application in agriculture has not materialized 
because of lack of technology development. 

 
3.  PLANT GROWTH PROMOTION 

 
3.1 Crop growth stimulation by companion crops/plants:  Allelopathic growth 
stimulation of crops by plants is under-investigated and only a few examples are cited 
here. Corn cockle (Agrostemma githago L.) stimulation of wheat growth and yield was 
reported from former Yugoslavia in 1960’s (62). The growth factor involved was 
identified as agrostemin, consisting of principal component allantoin, several amino acids 
and purines, and was given a commercial patent.  Soil amended with alfalfa residues 
stimulated the tomato, cucumber, lettuce growth in greenhouse experiments and the 
growth factor was identified as triacontanol, a primary alcohol (180). Foliar application of 
allelochemical stimulated the rice, corn and barley growth. In a simple experiment using a 
U-tube, Rice (176) demonstrated that ground ivy (Glechoma hederaceae L.) stimulated the 
radish (Raphanus sativa L.) growth. Mallik and Watson (132) reported that the 
incorporation of black nightshade (Solanum nigrum L.)  residues stimulated the soybean 
growth and nodulation in pot experiments (Figure 1). 

  
3.2 Crop growth stimulation by rhizobacteria:  Rhizobacterial growth promotion is 
mediated directly by the production of growth regulators (10), and  indirectly by 
controlling plant pathogens, facilitating mineral uptake, promoting  mycorrhizal fungal 
growth, enhancing biological nitrogen fixation (BNF) (symbiotic and diazotrophic) and 
suppressing the debilitating rhizobacteria (DRB). Growth promotion is most often host 
cultivar specific (19,38,162). Several abiotic and biotic factors influence the rhizobacterial 
growth promotional function (200). Production of growth regulators by rhizobacteria plays 
important role in plant growth promotion. 
 Glick et al. (67) reported that canola seed inoculated with Ps.  putida (strain Gr 
12-2) promoted early seedling emergence, root  and shoot  growth  under stressed soil and 
temperature conditions compared with a mutant strain lacking the enzyme ACC 
deaminase. Twelve strains of Bacillus sp., isolated from spring wheat rhizosphere, were 
tested for their growth promotional potential of wheat cultivars at eight sites with different 
soil types (Saskatchewan, Canada) over three years. Eight of the Bacillus strains increased 
tiller numbers irrespective of locations or years, one isolate increased the wheat yield at 
two locations in two of the three year study (70). Another isolate increased yield by 2 to 12 
% at three of the five locations during the study (70).   
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Figure 1.  The effects of peat moss (PM), giant ragweed (RW), redroot pigweed (PW) and black 

nightshade (BN) at 2.5 (A), 5.0 (B) and 10.0 (C) mg of residue/g of sand on soybean 
nodulation.  Control was sand only.  From Mallik and Watson (132). 

 
 After several years of field testing, Backman et al. (12) reported that B. subtilis 
strain A-13 and GB03 in combination with a fungicide significantly promoted the growth 
of pea and suppressed Rhizoctonia and Fusarium spp. that cause root disease. The isolate 
is a promiscuous inoculator of both monocots and dicots, is a spore former and highly 
tolerant to environmental and soil stresses. The strain GB03 together with GB07 has been 
commercially introduced (trade name “Quantum”) for its growth promotional effect.  Ps. 

cepacia (strain PCI) suppressed the phytophthora blight (Phytophthora capsici) and 
enhanced the growth and yield of red pepper (107). However, the results were inconsistent 
depending on the year and location. The antibiotics cepacid from the strain PCI and 
pseudane A from the strain PCII (another strain of the same bacterium) completely 
suppressed the pathogen in vitro. Seeds (previously coated with methoxy cellulose and 
“celite”) treated with pseudane A [2-(2-heptenyl)-3methyl-4-quinolinone] increased the 
fresh weight (40-76%) and plant height (16-22%), and the authors suggested that growth 
stimulation was due to antibiotic pseudane A (107). 
 Seeds inoculated with pseudomonads improved the soybean and canola (110) 
seedling emergence in the field, but the mechanism of germination promotion is unclear.  
Rice and cotton seeds inoculated with Ps.  fluorescens biotypes C and G increased plant 
growth and inhibited several plant pathogens (F. oxysporum, R. solani, Acrocylindrium 

oryzae, Xanthomonas campestris, and Ps. syringae) (186). Presumably the growth 
promotion was due to disease suppression. Gupta et al. (73) reported that peanut seed 
inoculated with fluorescent Pseudomonas  sp. (GRC2), which produces siderophores, 
HCN and IAA, significantly enhanced seed germination, early seedling growth, nodule 
weight, crop yield and suppressed the  charcoal rot disease (Macrophomina phaseoli) 
when planted in pathogen-infested soil. Here the pathogen suppression played a prominent 
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role in growth promotion, while the siderophore, HCN and IAA production contributed to 
growth enhancement. Potato seed tubers treated with fluorescent pseudomonads (strains 
WCS 365, 358, 374) increased potato yields by 70% than control (65). These siderophore 
strains producers, were more effective than inhibitory substance producers.  For additional 
examples of growth promotion by rhizobacteria see Table 5. 

  
Table 5. Additional examples of growth promoting rhizobacteria. 
 
Crop Rhizobacteria Reference 
Barley Pseudomonas sp. 90  
Bean Ps. putida 7  
Canola Rhizobacteria 108, 109  
Corn Pseudomonas sp. 83  
Corn Rhizobacteria 90  
Cotton  B. subtilis 13  
Lentil Ps. putida (G 2-8; G 11-32) 31  
Cabbage Ps. aeroginosa 66  
Onion Ps. fluorescens 66  
Peanut B. subtilis 211  
Potato Ps. fluorescens, Ps. putida 218  
Radish Rhizobacteria 111  
Tobacco Azotobacter 183 
Vegetables Rhizobacteria 52 
Wheat, spring Bacillus sp. 32   
Wheat Azorhizobium caulinodans 135 

 

3.3 Biofertilizers: Biofertilizers have recently gained attention as a consequence of public 
desire for organic food. Application of biofertilizer or microbial inoculant as a supplement 
to chemical fertilizers reduces crop production cost, improves soil properties and promotes 
soil–microbial balance. Depending on the nutritional status of the soil and the crop being 
cultivated, a possible composition of a bio-fertilizer might include: (i) biological nitrogen 
fixer (BNF) - symbiotic, and/or associative, endophytic diazotrophs, (ii) P- and K- 
solubilizing bacteria, (iii) growth-promoting rhizobacteria (pseudomonads and/or others), 
(iv) biocontrol agents against soil-borne  pathogens, (v) bioherbicides,  (vi) VAM fungi  
and (vii) nematode-trapping fungi (153, 208). 
 Adequate nitrogen availability is a key element in crop production, and the 
availability of an adequate carbon source in the rhizosphere is a major factor in the 
nitrogenous activity. The potential of endophytic and associative diazotrophs as 
contributors to the nitrogen pool in agricultural fields and in pastures has been recognized. 
Genera of diazotrophs of agricultural importance include Azospirillum, Azotobacter, 
Acetobacter, Burkholderia, Herbaspirillum, Spirillum, Closrtidium, as well as a few 
genera belonging to Enterobacteriaceae. 
       Root inoculation of Azospirillum stimulates proliferation of lateral roots and root hairs 
(94, 207), which promotes phytohormone production, uptake of nitrogen (55) and minerals 
(124), as well as production of antifungal and antibacterial compounds (53, 155, 159). 
Insoluble phosphate compounds are not available to plants. Phosphate-solubilizing 
rhizobacteria (selected species of Bacillus, Flavobacterium, Micrococcus, Mycobacterium 
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and Pseudomonas) are reported to stimulate root activities, increasing organic acid 
secretion from roots, thus assisting phosphate-solubilization and promoting plant-
mycorrhizal symbiotic association furthering phosphorous uptake. 

 

3.3.1 Rice: Soil application or seed inoculation of Azospirillum lipoferum in field 
experiments resulted in a 22 % increase in rice grain yield (15) and enhanced the uptake of 
P and ammonia (145).  Islam and Bora (89) reported that A. lipoferum inoculation reduced 
the bacterial leaf blight resulting in growth promotion and yield.  Mirza et al. (140) 
reported that Herbaspirillum can contribute 19 to 58% nitrogen needs of rice crop 
depending on crop cultivar and bacterial strain used.  Inoculation of rice seedlings with 
Burkholderia vietnamiensis, an isolate from the rhizosphere of young rice plants 
significantly enhanced rice grain yield (0.8 t/h) in field experiments (210).  An endophytic 
species of Burkholderia isolated in Brazil can fix 31% of the nitrogen required by the rice 
plant and its application increased the plant biomass by 69% under gnotobiotic conditions 
(16). 
 Azotobacter chroococcum and A. vinelandii have been used in the majority of the 
studies. Application of Azotobacter is reported to increase rice yields by 20% (236). 
Although reports of growth promotion by Azotobacter application abound in the literature, 
inconsistent results are reported as well. 
 Clostridium, an obligate anaerobe, can fix nitrogen only in presence of a high 
level of utilizable carbon. The inoculants can significantly enhance rice yield by returning 
straw to the field raising the carbon to nitrogen ratio (141). 
 Diazotrophic rhizobacteria commonly occurring in rice include Azospirillum, 
Herbaspirillum and Burkholderia (16, 129). These diazotrophs, including cyanobacteria, 
can substantially contribute to nitrogen requirements of rice plants under favorable soil 
conditions for nif-genes function. Based on extensive studies at IRRI, Watanabe et al. 
(222) and Rogers and Ladha (182) concluded that BNF can provide up to 25% of nitrogen 
requirements of rice plants in the field.  Yanni et al. (237) and Biswas et al. (22,23) 
reported significant rice yield increases in a clover-rice rotation. They suggested that the 
rhizobia from clover improved utilization of available soil nutrients by improving rice root 
morphology and physiology, resulting in growth promotion and yield.  Other examples of 
beneficial effects of plant-diazotroph associations are presented in Table 6. Although 
examples of beneficial effects of diazotrophs are replete in literature, inconsistency in 
expected results has impeded exploitation of the diazotrophs in agriculture. Principal 
reasons for this are (i) inadequate understanding of the complex interplay between the 
introduced inoculants and indigenous microflora in the rhizosphere and (ii) their response 
to edaphic and environmental factors. 
 The biofertilizer (“BioGrow”) used in Vietnam consists of (i) Ps. fluorescens/Ps. 
putida (BNF), (ii) Klebsiella  pneumoniae (anaerobic BNF,  PO4-solubilizer) and (iii) 
Citrobacter freundii (BNF, antagonistic to 50% of common rice rhizospheric bacteria, but 
not  to the two other components of the biofertilizer) (150). The inoculant is prepared by 
adding broth culture of bacteria separately in a carrier material made of clay soil (50%),  
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Table 6.  Beneficial effects of plant-diazotroph associations on crop yield under field conditions 
 

Crop Diazotrophs Yield increase (t/ha) Reference 

Sugarcane Azospirillum brasilense 9 (cane) 193 
 A. diazotrophicus 5 (cane) 193 
Rice Azotobacter sp. 0.9 (grain) 236 
Corn Herbaspirillum seropedicae 1.5 (grain) 181 

Modified from  Kennedy et al. (99) 

 
rice husk (25%), sugar (1%) broth culture (24%) and water.  The three inoculants thus 
prepared separately are mixed together in the field prior to application (10 parts each of 1 
and 2, and 1 of 3). The bio-fertilizer is applied in the field by evenly hand spreading at 111 
kg/ha. Non-inoculated carrier at 222 kg/ha served as control. The biofertilizer application 
significantly increased grain yield and nitrogen uptake (150) (Table 7).  Biofertilizer 
containing two cyanobacteria (Anabaena and Nostoc), Azospirillum sp. and Azotobacter 
sp. field applied, along with 1/3 of the recommended amount of urea fertilizer for rice 
cultivation produced the greatest tiller number, harvest index, grain size and yield than any 
other treatment combinations of biofertilizer components and nitrogen fertilizer (236).  
Similar multi-strains biofertilizer are now being used in Australia (230), Pakistan (129) 
and Egypt (80). Overall rice grain yield increase is reported to be about 20%. 

 
Table 7.  Effects of farmyard manure and multi-strain biofertilizer on rice grain yields 
 

Manure (kg/ha) Biofertilizer (kg/ha)  

 0 111 222 444 Mean 

 Grain yield (kg/ha) 
5560 5476 6170 5890 5801 5834 
11120 5443 6360 6111 5979 5973 
22240 5764 5813 6116 5854 5888 
Mean2 5561b 6114a 6039a 5878a  
1Modified from Nguyen et al. (150); 2Means followed by the same letter are not significantly 
different at the p=0.05 level as determined by LSD test. 

 
3.3.2 Wheat: A variety of diazotrophs occur in wheat rhizosphere:  Azospirillum, 
Azotobacter,    Azorhizobium, Bacillus, Herbaspirillum and Klebsiella.   A 30% increase in 
wheat yield was reported with A. brasilense under field conditions with low rates of 
nitrogen fertilizer (50 to 60 kg N/ha), while at higher nitrogen rates the effect of the 
organism was eliminated (155). The yield response varied depending on the wheat 
cultivar.  Compatibility between the host cultivar and bacterial strain is highly desirable for 
maximum benefit of the association due to differences among the bacterial strains efficacy.   
Based on the evaluations of over 20 years of field applications of A. brasilense and A. 

lipoferum, Okon and Labandera-Gonzales (155) concluded that application of Azospirillum 
can increase crop growth and yield by 5 to 30% depending on soil and climate conditions. 
 Herbaspirillum, an endophytic diazotroph, colonizes wheat, rice, corn, sorghum, 
sugarcane (Saccharum officinarum L.) and other graminaceous plants. El-Mohandes (51) 
reported that application of H. seropedicae significantly increased straw and grain yields 
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in wheat, as well as percent nitrogen recovery under field conditions. Earlier the same 
bacterium was also shown to enhance seed emergence (161).   Other studies indicated that 
the application of diazotrophs (BNF) and/ PGPR can supplement fertilizer use in wheat 
cultivation (80,101,155), while Kennedy and Islam (100) found that wheat diazotrophs can 
contribute from 10 to 30 kg N/ha. 

 
3.3.3 Cotton and corn: Cotton seedling root inoculated with A. brasilense enhanced the 
root and root hair growth resulting in significant nitrogen uptake (0.91 mg/N/PL), as well 
as an increase in plant height and dry matter (55). Inoculated plants were able to produce 
antifungal and antibacterial compounds, growth regulators and siderophores (159). 
Azotobacter inoculation increased the cotton yields up to 28% as than controls (88). 
 Corn requires large nitrogen inputs to maximize yields.  Garcia de Salamone et al. 
(63) using 15N dilution technique demonstrated that BNF contributes significantly to the 
nitrogen needs of the crop. Commonly found diazotrophs included Enterobacter, Rahnella 

aquatilis, Paenibacillus, Azotofixans, Azospirillum, Herbaspirillum seropedicae, Bacillus 

circulans and Klebsiella (33).  Application of biofertilizer containing A. brasilense 
increased corn yields from 50 to 95% (0.7 to 1.0 t/ha) depending on soil nitrogen status, 
when the nitrogen fertilizer was applied at low to medium levels (18 to 46 kg/ha), but at 
higher rates of nitrogen fertilizer the inoculation effect was reduced. The amount of 
nitrogen fixed varies greatly between host cultivars and strains of Azospirillum used. The 
positive effect of the inoculant is mainly physiological improvement of the inoculated 
plants promoting nutrient and water uptake (154).  As stated before, the bacterial strain and 
host cultivar play very important roles in the function of biofertilizer (44, 45).  
 Corn seed inoculation with H. seropedicae increased the corn grain yield in 
greenhouse experiments by 49 to 82% with applied nitrogen fertilizer, compared to 16% 
increase without fertilizer.   These results indicate that the inoculum improved the nitrogen 
assimilation of plant.  Application of inoculant in field experiments at different locations in 
the USA, with a uniform application of 224 kg N/ha at each location, increased the corn 
yield across locations by 21% (181) (Table 8). Seed inoculation with a selected strain of 
Burkholderia cepacia enhanced corn yield by 6.3% in field experiments, while under 
greenhouse conditions using non-sterile soil corn yield increased between 36 to 48%,  
depending on host cultivar and bacterial genotype (181). Beneficial effects of Azospirillum 

lipoferum, A. indiegens and Azorhizobium caulinodans inoculation were also reported by 
the same authors (181).  The positive response of corn seed inoculation with Rhizobium 

leguminosarum bv. trifolii and R. etli may be interpreted as PGPR effects. As in other 
instances compatibility between genotypes of both the host and Rhizobium plays an 
important role in the function of the association. 
 The application of biofertilizer containing  A. chroococcum, B. megaterium (P-
solubilizer), B. mucilaginous  (K-solubilizer)  and Glomus mosseae or G. intradices (VAM 
fungus) under greenhouse conditions using garden soil enhanced the corn growth and plant 
height in 87 days pot experiments compared with no amendment, chemical (urea, KH2PO4, 
KCL) or organic (chicken manure with rock phosphate) fertilizers. The bio-fertilizer 
application also improved the soil properties and increased P and K uptake by the plants.  
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Table 8. Effects of rhizobacterial inoculants with a 224 kg/ha nitrogen application on corn yield at 

two locations in the U.S. 
 

Location Rhizobacteria Yield (t/ha)1 Yield increase (%) 

Lancaster Klebsiella pneumonia 17 26 
 Bacillus sp. 17 30 
Arlington Pantoea agglomerans 14 18 
 H. seropedicae 15 12 
 Klebsiella sp. 16 20 
1All treatment yields are significantly different from their controls at p=0.05 or better. Modified from 
Riggs et al. (181) 

 
The application of biofertilizer containing G. mosseae produced greater biomass, while 
biofertilizer with G. intradices increased the plant height (233).  James et al. (91) reported 
earlier that H. seropedicae can also fix nitrogen in corn. 

 

3.3.4. Sugarcane:  Sugarcane, like corn, requires large inputs of nitrogen (193,194). 
Application of diazotrophic PGPR, as Acetobacter (Gluconacetobacter) and 
Herbaspirillum, significantly reduces the amount of nitrogen fertilizer needed (47). 
Boddey et al. (26), using 15N natural abundance technique showed that BNF can contribute 
60% of nitrogen assimilated by sugarcane not receiving nitrogen fertilizer. Considering the 
limit of the accuracy of the technique used, it is possible that a part of the nitrogen is 
assimilated from soil facilitated by PGPR effects of the inoculants. Dobereiner (46) 
concluded that BNF can contribute up to 150 kg N/ha. Muthukumarasamy et al. (146) 
reported  that  inoculation of sugarcane settes with biofertilizer (containing Acetobacter 
diazotrophicus, A. lipoferum, Herbaspirillum sp. and vesicular arbuscular mycorrhiza) in 
field experiments that received 50% recommended nitrogen fertilizer produced the same 
cane yield as that receiving only the recommended fertilizer rate (control). The authors 
suggested that the diazotrophs might have contributed a major quantity of plant nitrogen 
requirement. The bacteria also produced appreciable amounts of IAA that helped promote 
rooting and growth.  They concluded that bio-fertilizer application could reduce nitrogen 
fertilizer application by 50% without loss in yield. 
 The diazotrophs commonly found in sugarcane roots and stems (rhizosphere, 
rhizoplane and also endophytically) include Acetobacter diazotrophicus, A. brasilense, A. 

lipoferum, A. amazonense, Bacillus brasiliensis, Burkholderia tropicalis, Herbaspirillum 

seropedicae and H. rubrisubalbicans (100,173,186,200).  The endophytic diazotrophs 
colonize sugarcane spontaneously and their numbers decline where fertilizer nitrogen is 
used rendering the plant more dependent on fertilizer. A. brasilense and A. lipoferum occur 
in roots, stems and leaves of sugarcane. Soil application of bacteria is reported to enhance 
cane yield by 9 and 5 t/ha in the first and ratoon crops, respectively (194).  Acetobacter 
(Gluconacetobacter) diazotrophicus, an endophytic acid tolerant  biological N-fixer that 
grows best in sugar rich medium contributes from 60 to 80% of sugarcane plant nitrogen 
(equivalent to 200 kg N/ha) (27).  Seedling inoculation with an effective strain of the 
bacterium has become part of commercial sugarcane cultivation (120).   H. seropedicae 
and H. rubrisubalbicans occur endophytically in roots and stems of sugarcane. H. 

seropedicae can significantly enhance cane yield and leaf nitrogen content (146). 
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Application of fertilizer-N up to 300 kg N/ha does not reduce population density of the 
bacterium in field (173). Meyer et al. (139) reported that Burkholderia brasiliensis and B. 

tropicalis, endophytic in sugarcane roots and stems, are antagonistic to nematodes.  

 
4. RHIZOBACTERIAL SELECTION AND PRESERVATION 

 
 Two criteria for the screening of rhizobacterial strains are the (i) selection of 
effective strains to suppress pests and/or promote growth of a compatible host and (ii) the 
ability of the strain to establish and maintain an effective population density throughout 
the lifecycle of the host plant (151).  A standardized screening procedure is needed.  
Introduced inoculant bacteria must compete with indigenous microbes to colonize the 
host's rhizosphere.  Rigorous testing for the strain's performance at different stages of the 
host's lifecycle in the field is necessary to select the most effective strain for potential 
commercial application. 
 Because the loss of selected traits through mutation is possible, preservation and 
maintenance of the selected rhizobacteria are important.  Freezing-drying is the preferred 
method of preservation and maintenance of the bacterial culture.  However, when freeze-
drying facilities are unavailable, there are other acceptable methods available (132).  After 
regeneration of the preserved bacterium, harvesting the cells in the late exponential growth 
phase for the inoculant preparation is recommended. Rigorous checking, as is done for 
rhizobial inoculants, of the inoculant bacteria for their original traits for which they were 
selected is needed to insure that they maintain their effectiveness.  Preparation and 
production of the inoculant are discussed elsewhere (132).   

 
5. CONCLUSIONS 

 
 Allelopathic research began in earnest in the early 1960's as an intellectual 
curiosity, but soon it was realized that its principle could be applicable for pest 
management in low input agriculture.  Low input agriculture utilizes all available natural 
resources for pest management.  Research of the past half a century has made the concept 
feasible.  Efforts to identify allelopathic crop accessions and the plants whose residues 
indicate weed suppressive potential should be accelerated.  Selection of rhizobacteria for 
plant growth promotion and weed and plant pathogen suppression deserves emphasis.  
Often ignored is the compatibility of selected rhizobacterium with the host plant and its 
competitiveness with the indigenous microbes in the host's rhizosphere.  Substantive 
progress has been made in identification of allelochemicals; more effort is needed in this 
area.  Identification of the gene(s) related to allelochemical production or other desirable 
traits should receive more attention.  Rhizobacterial application demonstrated positive 
results of weed and plant pathogen suppression, as well as plant growth promotion, but 
inconsistencies between the laboratory and field results impede their use in farming 
systems.  A better understanding of microbial ecology in the host rhizosphere and its 
interaction with the introduced inoculant can reduce this inconsistency leading to increased 
application of rhizobacterial inoculant in low input farming systems.  Application of wild 
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or genetically manipulated rhizobacteria is likely to increase in the future as a component 
of sustainable agriculture. 
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