Postseason Diagnosis of Potassium Deficiency in Soybean Using Seed Potassium Concentration

Md. Rasel Parvej*

Virginia Polytechnic Inst. and State Univ. Tidewater Agricultural Research and Extension Ctr. 6321 Holland Road Suffolk, VA 23437 and Dep. of Seed Science and Technology Bangladesh Agricultural Univ. Mymensingh 2202 Bangladesh

Nathan A. Slaton Matthew S. Fryer Trenton L. Roberts

Larry C. Purcell

Dep. of Crop, Soil, and Environmental Sciences Univ. of Arkansas 1366 W. Altheimer Drive Fayetteville, AR 72704

Core Ideas

- Seed-K concentrations accounted for 60% of the variation in relative yield of unfertilized soybean for 100 site-years in North America.
- The proposed deficient seed-K concentration (<16.5 g kg⁻¹) identified fields that responded positively to fertilizer K 77% of the time.
- Seed-K concentration difference with and without fertilizer K decreased with the increase of soil K.
- Seed-K concentrations can help diagnose reasons for low yields and correct K deficiency for subsequent crops.

Soybean [Glycine max (L.) Merr.] seed nutrient concentrations may be useful for postseason diagnosis of nutrient deficiencies to identify reasons for lower-than-expected yields. Our objective was to determine the relationships between seed-K and soil-K concentrations and relative soybean yield and to develop potential seed-K concentration thresholds for diagnosis of K deficiency as a yield-limiting factor. Soil-test K and seed-K concentrations and yield data were collected from published and unpublished K fertilization research conducted in Arkansas (33 site-years), Indiana (1 site-year), Iowa (34 site-years), Missouri (1 site-year), Tennessee (6 site-years), Virginia (1 site-year), and Canada (24 site-years). Seed-K concentrations accounted for 66% of the variation in relative yield of soybean receiving no fertilizer K for Arkansas, 48% for Iowa, 78% for Canada, and 60% for North America from a database that included 100 site-years. The critical seed-K concentration ranges were 15.6 to 17.0 g K kg⁻¹ for Arkansas, 17.4 to 20.0 g K kg⁻¹ for lowa, 14.6 to 16.2 g K kg⁻¹ for Canada, and 16.5 to 17.7 g K kg⁻¹ for North America. Seed-K concentrations below the lower threshold for North America accurately predicted positive yield responses to fertilizer K at 77% of the sites classified as deficient. The difference between seed-K concentration of soybean grown with and without fertilizer K decreased linearly as soil-K concentration increased and plateaued when soil-K concentration was \geq 87, 139, 73, and 104 mg K kg⁻¹ for Arkansas, Iowa, Canada, and North America, respectively. Results suggest that seed-K concentrations can be used to aid in the diagnosis of K deficiency at maturity.

Abbreviations: CL, confidence limits; LP, linear-plateau.

Potassium is a common yield-limiting nutrient for soybean production. Seed yield increases from K fertilization of 5 to 25% are common (Clover and Mallarino, 2013; Coale and Grove, 1990; Mallarino et al., 1991; Parvej et al., 2015; Slaton et al., 2010, 2013), but soybean plants may not express K deficiency symptoms during the growing season. Trifoliolate leaf K concentration at the R1–R2 stage (Fehr et al., 1971) is currently the only information available to diagnose in-season K deficiency. The use of trifoliolate leaf K concentrations to diagnose K deficiency beyond the R2 stage is largely dependent on professional experience because critical tissue-K concentrations are not available for other growth stages. Based on our field observations of irrigated soybean in Arkansas, K deficiency symptoms do not commonly appear until mid to late reproductive growth (R5 stage and beyond). Although yield loss from K deficiency cannot likely be fully recovered at this late growth stage, proper diagnosis is important to correct the soil-K deficiency problem before the next crop.

Nutrient concentrations in mature plant tissues, including seed, can be used to identify nutrient deficiencies. For example, the NO_3 -N concentration in a lower segment of mature corn (*Zea mays* L.) stalks is used to assess whether too little,

Accepted 26 May 2016.

© Soil Science Society of America, 5585 Guilford Rd., Madison WI 53711 USA. All Rights reserved.

Soil Sci. Soc. Am. J. 80:1231-1243

doi:10.2136/sssaj2016.02.0030

Received 7 Feb. 2016.

^{*}Corresponding author (parvejmr@gmail.com).

adequate, or excessive fertilizer N was applied during the season (Binford et al., 1990, 1992; Brouder et al., 2000). The K concentrations of mature soybean seed might be useful in diagnosing late-season K deficiency and help explain lower-than-expected yields in the absence of K deficiency symptoms (e.g., hidden hunger). Small and Ohlrogge (1973) reported that soybean seed-K concentrations from 152 commercial fields were quite uniform, but micronutrient concentrations were variable enough that they expressed optimism for using seed analysis as a postseason diagnostic tool. For soybean, S (Hitsuda et al., 2004), Mn (Cox, 1968; Hitsuda et al., 2010; Parker et al., 1981), Zn (Hitsuda et al., 2010), B (Hitsuda et al., 2010), Cu (Hitsuda et al., 2010), and Mo (Lavy and Barber, 1963) deficiencies can reportedly be diagnosed from mature seed nutrient concentrations. Hitsuda et al. (2004) reported that seed-S concentration explained 74% of the variability in the relative yield for soybean grown in pots and soybean seed having >2.3 g S kg⁻¹ was considered normal (i.e., nutritionally sufficient). Lavy and Barber (1963) observed that soybean grown on slightly acid soils did not respond to seed-applied Mo when the planted seed contained > 1.6 mg Mo kg⁻¹ and concluded that mature soybean seed-Mo concentration could be used to assess whether the soil contained sufficient available Mo. Mallarino and Higashi (2009) reported no significant relationship between relative corn yield or soil-test K with absolute corn grain-K concentration, but a significant relationship was found between relative grain K and soil-test K. We could find no other research relating seed-K concentration to soil-test K or crop yield for postseason diagnosis of K deficiency in soybean or any other crop.

Soybean seed-K concentrations are reportedly influenced by K availability and may be increased by K fertilization. Changes in seed-K concentrations due to fertilization most often occur when seed yield also increases from K fertilization (Coale and Grove, 1990; Clover and Mallarino, 2013; Parvej et al., 2015; Slaton et al., 2013; Terman, 1977; Yin and Vyn, 2002). However, seed-K concentration increases from K fertilization in the absence of a yield benefit have also been reported (Clover and Mallarino, 2013; Parvej et al., 2015; Slaton et al., 2013). Potassium fertilization can increase soybean seed-K concentrations more than 50% (Sale and Campbell, 1987), but increases of 5 to 20% are more typical (Bellaloui et al., 2013; Clover and Mallarino, 2013; Nelson et al., 2005; Oltmans and Mallarino, 2015; Parsons et al., 2007; Parvej et al., 2015; Vyn et al., 2002; Yin and Vyn, 2003). The trend for seed K to increase in fields where yield is also increased by fertilizer K suggests that relative soybean yield and seed-K concentration may be correlated.

Our primary research objectives were to determine whether a relationship exists between relative soybean yield and seed-K concentration and, if a relationship exists, to define critical seed-K concentration thresholds for identifying K deficiency. Our secondary objective was to evaluate whether or not seed-K concentration increases from K fertilization only when soil-K availability is low. We predicted that (i) soybean relative seed yield and seed-K concentration would be positively correlated, (ii) soybean seed could be used to diagnose K deficiency, and (iii) soybean seed-K concentration would increase as soil-test K increased because research has shown soybean seed-K concentration is often influenced by K fertilization.

MATERIALS AND METHODS Experimental Sites and Treatments

Unpublished data and results from published research with objectives investigating soybean response to K fertilization were used to achieve the stated objectives. The final dataset included a total of 100 site-years of results. The dataset included 33 observations from Arkansas, 34 observations from Iowa, 24 site-years from Canada, and another nine observations from several other soybean-producing states within the United States (Table 1). Only field research results were included in the dataset. Among the 33 observations from Arkansas, nine were from unpublished research. Selected information summarized in Table 1 includes site number, geographic location, soil series, soil group, cultivar, previous crop, row spacing, and irrigation method, if available. Seed-K concentration and soybean yield response to K fertilization from replicated research were required for the information to be included in the dataset. The relative seed yield of soybean receiving no fertilizer K for each site-year was calculated by dividing the mean yield of soybean receiving no fertilizer K by the highest mean yield of soybean receiving fertilizer K and multiplying by 100. Note that this method allows for the calculation of relative yields greater than 100%, which would indicate that soybean receiving no fertilizer K produced a higher numerical yield than soybean receiving fertilizer K and therefore could indicate a possible yield decrease from fertilization.

Information on soil pH, soil-test K concentration, and yield and seed-K concentration responses to fertilizer K are summarized in Table 2. The seed-K concentrations listed in Table 2 represent soybean receiving no fertilizer K and the greatest numerical seed-K concentration of soybean receiving fertilizer K. Soil chemical properties, including soil-test K concentration, were not listed for all site-years obtained from the literature. For site-years that had soil-test K concentration, soil K was extracted with either Mehlich-1 (Sims, 1989), Mehlich-3 (Helmke and Sparks, 1996), or NH4OAc (Warncke and Brown, 1998) procedures using air- or oven-dry soil samples that represented the 0- to 10-cm (Sites 1-33, 73-89, and 98) or the 0- to 15-cm (all other sites) soil depths before establishing the field trial. Soil-test K concentrations determined only by Mehlich-3 or NH_4OAc methods were used to evaluate the correlations between relative soybean yield and soil-test K concentration and between seed-K and soil-test K concentrations because these two methods have consistently been shown to extract comparable amounts of soil K (Beegle and Oravec, 1990) and because the same soil-K concentration thresholds are often used for making fertilizer-K recommendations (Mallarino et al., 2013). The Mehlich-1 method frequently extracts different amounts of soil K than the Mehlich-3 (Sikora, 2004) and NH₄OAc (Gartley et al., 2002) methods. Although soil sample depths varied among sites, soil-K concentrations were not adjusted for the different depths. In Arkansas, Mehlich-3–extractable K from the 0- to 10-m depth is, on average, 13 mg

K kg $^{-1}$ greater than in samples collected from the 0- to 15-cm depth (N.A. Slaton, unpublished data, 2007).

The amount of detail describing soybean seed analysis for each site-year obtained from the literature differs (see references

Table 1. Selected soil and agronomic information of each site. Soil classification

		5011 Classifica			Previous	Kow		
Site	Location	Series	Groupt	Cultivar	crop	spacing	Irrigation	References
						cm		
1	Arkansas	Calhoun	TG	Armor 47F8	soybean	38	irrigated	unpublished data (2009)
2	Arkansas	Calhoun	TG	Armor 48R40	rice	38	irrigated	unpublished data (2012)
3	Arkansas	Calhoun	TG	Armor 53R15	rice	38	irrigated	unpublished data (2012)
4	Arkansas	Dewitt	TA	Armor 48R40	soybean	18	irrigated	unpublished data (2013)
5	Arkansas	Calhoun	TG	Armor 48R40	rice	38	irrigated	unpublished data (2013)
6	Arkansas	Calhoun	TG	Armor 53R15	rice	38	irrigated	unpublished data (2013)
7	Arkansas	Dewitt	TA	Armor 47R13	rice	18	irrigated	unpublished data (2014)
8	Arkansas	Calhoun	TG	Armor 48R66	rice	38	irrigated	unpublished data (2014)
9	Arkansas	Calhoun	TG	Armor 55R22	rice	38	irrigated	unpublished data (2014)
10	Arkansas	Dewitt	TA	Armor 55R22	soybean	18	irrigated	Fryer (2015)
11	Arkansas	Sharkey/Desha	CE/VH	Armor 55R22	soybean	97	irrigated	Fryer (2015)
12	Arkansas	Desha	VH	Armor 55R22	soybean	97	irrigated	Fryer (2015)
13	Arkansas	Foley/Calhoun	GN/TG	Armor X1307	rice	38	irrigated	Fryer (2015)
14	Arkansas	Sharkey/Steele	CE/AU	Armor X1307	soybean	97	irrigated	Fryer (2015)
15	Arkansas	Calloway	AF	Armor 48R40	soybean	38	irrigated	Fryer (2015)
16	Arkansas	Calloway	AF	Armor X1316	soybean	38	irrigated	Fryer (2015)
17	Arkansas	Calloway	AF	Armor X1307	rice	38	irrigated	Fryer (2015)
18	Arkansas	Dewitt	TA	Armor 47R13	soybean	76	irrigated	Fryer (2015)
19	Arkansas	Sharkey/Desha	CE/VH	Armor 55R22	soybean	97	irrigated	Fryer (2015)
20	Arkansas	, Sharkey/Desha	CE/VH	Armor 55R22	sovbean	97	irrigated	Fryer (2015)
21	Arkansas	Sharkey	CE	Halo 4:99	sovbean	97	irrigated	Fryer (2015)
22	Arkansas	Calloway	AF	Armor 55R22	sovbean	38	irrigated	Frver (2015)
23	Arkansas	Calloway	AF	Armor 55R22	sovbean	38	irrigated	Frver (2015)
24	Arkansas	Calloway	AF	Pioneer 94Y82	sovbean	76	irrigated	Frver (2015)
25	Arkansas	Calloway	AF	Armor 49R56	sovbean	38	irrigated	Frver (2015)
26	Arkansas	Hillemann	GN	Asgrow 5501	rice	18	irrigated	Slaton et al. (2013)
27	Arkansas	Hillemann	GN	UA 4805	rice	18	irrigated	Slaton et al. (2013)
28	Arkansas	Calhoun	TG	Armor 47G7	sovbean	38	irrigated	Slaton et al. (2013)
29	Arkansas	Sharkev	CE	HBK 5525	sovbean	48	irrigated	Slaton et al. (2013)
30	Arkansas	Dewitt	TA	Armor 47F8	fallow	76	irrigated	Slaton et al. (2013)
31	Arkansas	Henry	TF	HBK 4727	rice	38	irrigated	Slaton et al. (2013)
32	Arkansas	Calhoun	TG	Armor 47F8	sovbean	38	irrigated	Slaton et al. (2013)
33	Arkansas	Calhoun	TG	Armor 47F8	sovbean	38	irrigated	Slaton et al. (2013)
34	lowa	Canisteo	TF	Pioneer 92M70	corn	_	rainfed	Clover and Mallarino (2013)
35	lowa	Canisteo	TF	Prairie Brand 2643	corn	_	rainfed	Clover and Mallarino (2013)
36	lowa	Webster	TF	Asgrow 2601	corn	_	rainfed	Clover and Mallarino (2013)
37	lowa	Kenvon	TH	Crows 2130	corn	_	rainfed	Clover and Mallarino (2013)
38	lowa	Canisteo	TF	Latham 2038	corn	_	rainfed	Clover and Mallarino (2013)
39	lowa	Primohar	AH	Kruger 223	corn	_	rainfed	Clover and Mallarino (2013)
40	lowa	Primohar	AH	Kruger 223	corn	_	rainfed	Clover and Mallarino (2013)
41	lowa	Nira		Asgrow 3602	corn	_	rainfed	Clover and Mallarino (2013)
42	lowa	Mahaska	ΔΤΔ	Asgrow 3302	corn		rainfed	Clover and Mallarino (2013)
43	lowa	Clarion	тн	Asgrow 2601	corn	_	rainfed	Clover and Mallarino (2013)
44	low2	Nicollet	АН	Prairie Brand 2007	corp	_	rainfed	Clover and Mallarino (2013)
45	lowa	Nicollet	АН	Prairie Brand 2004	corn	_	rainfod	Clover and Mallarino (2013)
45	lowa	W/ebstor		Pioneer 02M20	corn	_	rainfod	Clover and Mallarino (2012)
47	lowa	Chudo	TE	Crow(5 2120	corp	_	rainfod	Clover and Mallarino (2013)
47 18	lowa	Nicollot		Cropland 2090	corp	_	rainfed	Clover and Mallarino (2013)
40	iowa	meoner		Ciopianu 2009	com	_	ranneu	CIOVEL ATTU MAIIATTITU (2013)

continued on next page.

Table 1. continued.

		Soil classification			Previous	Row			
Site	Location	Series	Groupt	Cultivar	crop	spacing	Irrigation	References	
49	Iowa	Galva	TH	Kruger 223	corn	-	rainfed	Clover and Mallarino (2013)	
50	Iowa	Galva	TH	Kruger 223	corn	-	rainfed	Clover and Mallarino (2013)	
51	Iowa	Taintor	VA	Pioneer 93M42	corn	-	rainfed	Clover and Mallarino (2013)	
52	lowa	Mahaska	ATA	Pioneer 93M42	corn	-	rainfed	Clover and Mallarino (2013)	
53	lowa	Clarion	TH	Dekalb 26–52	corn	-	rainfed	Clover and Mallarino (2013)	
54	Iowa	Clarion	TH	Pioneer 92M61	corn	76	rainfed	Oltmans and Mallarino (2015)	
55	Iowa	Kenyon	TH	NK \$21-N6	corn	76	rainfed	Oltmans and Mallarino (2015)	
56	Iowa	Floyd	APH	Asgrow 2108	corn	76	rainfed	Oltmans and Mallarino (2015)	
57	Iowa	Canisteo	TE	Kruger 201	corn	76	rainfed	Oltmans and Mallarino (2015)	
58	Iowa	Webster	TE	Kruger 201	corn	76	rainfed	Oltmans and Mallarino (2015)	
59	lowa	Webster	TE	Stine 1923	corn	76	rainfed	Oltmans and Mallarino (2015)	
60	lowa	Haig	VA	Pioneer 93M11	corn	76	rainfed	Oltmans and Mallarino (2015)	
61	lowa	Grundy	ATA	Pioneer 93M11	corn	76	rainfed	Oltmans and Mallarino (2015)	
62	lowa	Grundy	ATA	FS 37A02	corn	76	rainfed	Oltmans and Mallarino (2015)	
63	lowa	Taintor	VA	Pioneer 92Y80	corn	76	rainfed	Oltmans and Mallarino (2015)	
64	lowa	Taintor	VA	Asgrow 3402	corn	76	rainfed	Oltmans and Mallarino (2015)	
65	lowa	Taintor	VA	Pioneer 93Y40	corn	76	rainfed	Oltmans and Mallarino (2015)	
66	lowa	Marshall	TH	Pioneer 93M11	corn	76	rainfed	Oltmans and Mallarino (2015)	
67	lowa	Exira	ТН	NK S28-B4	corn	76	rainfed	Oltmans and Mallarino (2015)	
68	Canada	_	THE	OAC Bayfield	wheat	19–76	rainfed	Vvn et al. (2002)	
69	Canada	_	THF/THT	NK S19–90/NK S08–80	corn	38	rainfed	Vyn et al. (2002)	
70	Canada	_	THE	OAC Bavfield/FL 2801R	wheat	38	rainfed	Vyn et al. (2002)	
71	Canada	_	THE	FL 2801R	corn	19	rainfed	Vyn et al. (2002)	
72	Canada	Listowel	THE	FL 2801R	corn	38	rainfed	Vyn et al. (2002)	
73	Canada	Listowel	THE	First Line 2801R	corn	38	rainfed	Yin and Vyn (2002)	
74	Canada	Listowel	THE	First Line 2801R	corn	38	rainfed	Yin and Vyn (2002)	
75	Canada	Listowel	THE	First Line 2801R	corn	38	rainfed	Yin and Vyn (2002)	
76	Canada	Listowel	THE	First Line 2801R	corn	38	rainfed	Yin and Vyn (2002)	
77	Canada	Toledo	тнт	Pioneer 9163	corn	50	rainfed	Yin and Vyn (2002)	
78	Canada	Toledo	тнт	Pioneer 9163	corn	50	rainfed	Yin and Vyn (2002)	
79	Canada	Toledo	тнт	Pioneer 9163	corn	50	rainfed	Vin and Vyn (2002)	
80	Canada	Toledo	тнт	Pioneer 9163	corn	50	rainfed	Vin and Vyn (2002)	
81	Canada	-	THE	OAC Bayfield	wheat	19_76	rainfed	Vin and Vyn (2002)	
82	Canada	_	THE	OAC Bayfield	wheat	19_76	rainfed	Vin and Vyn (2003)	
83	Canada	_	THE	OAC Bayfield	wheat	19_76	rainfed	Vin and Vyn (2003)	
84	Canada	_	THE	OAC Bayfield	wheat	19_76	rainfed	Vin and Vyn (2003)	
85	Canada	_	THE	OAC Bayfield	wheat	19_76	rainfed	Vin and Vyn (2003)	
86	Canada	_	тыр	OAC Bayfield	wheat	19-76	rainfod	Vin and Vyn (2003)	
87	Canada	_	тыр	OAC Bayfield	wheat	19-76	rainfod	Vin and Vyn (2003)	
88	Canada	_	тыр	OAC Bayfield	wheat	19-76	rainfod	Vin and Vyn (2003)	
80	Canada	_	тығ	OAC Bayfield	wheat	19-70	rainfod	Vin and Vyn (2003)	
90	Canada	Timborland	1111	Dokalb 2601P	wheat	76	rainfod	Parsons of al. (2007)	
90 01	Canada	Timberland	_	Dekalb 2601R	corp	76	rainfed	Parsons et al. (2007)	
91 02	Toppossoo	Momphis	_	Dekaid 2001K	couboan	76	rainfed	Polloloui et al. (2007)	
92	Toppossoo	Memphis	_	Pioneer 94/400	soubcan	70	rainfed	Bellaloui et al. (2013)	
95	Tennessee	Memphis	_	Pioneer 94/000	soubcan	76	rainfed	Bellaloui et al. (2013)	
94	Tennessee	Memphis	_	Pioneer 94/000	soybean	70	rainieu	Bellaloui et al. (2013)	
95	Tennessee	Dexter	-	Pioneer 94/M80	soubcean	/0	rainted	Bellaloui et al. (2013)	
90 07	Tennessee	Dexter	-	Pioneer 94/M80	soubcean	/0	rainted	Bellaloui et al. (2013)	
97	Indiana	Dexter		Pioneer 94/MöU	soybean	/0	rainted	Benaiour et al. (2013)	
90	Missa	IOFONIO-MIIIDFOOK	UEIN/UEP	Decks 336 INKK	corn	19	rainted	Noloca et al. (2008)	
99 100	Missouri	Mexico	VE	Asgrow 3/01	soybean	19	rainfed	Neison et al. (2005)	
100	Virginia	Davidson	KK	York	soybean	/5	rainted	Jones et al. (1977)	

TotoFightaDavisionFixToticSoybean7.5TainledJones et al. (1977)† AA, Aquic Argiudoll; AF, Aquic Fraglossudalf; AH, Aquic Hapludoll; APH, Aquic Pachic Hapludoll; ATA, Aquertic Argiudoll; AU, AquicUdifluvent; CE, Chromic Epiaquert; GN, Glossic Natraqualf; RK, Rhodic Kandiudult; TA, Typic Albaqualf; TE, Typic Endoaqualf; TF, TypicFragiaqualf; TG, Typic Glossaqualf; TH, Typic Hapludoll; UEN, Udollic Endoaqualf; UEP, Udollic Epiaqualf; VA, Vertic Argiaquoll; VE, VerticEpiaqualf; VH, Vertic Hapludoll.

		Soil-test K			Seed yield		See	ed-K concentra	ation	
Site†	Soil pH	conc.‡§	RSY¶	No K	+K#	Response††	No K	+K#	Response††	
		mg K kg ⁻¹	%	— kg h	na ⁻¹ —		— g K	kg ⁻¹ —		
1	8.0	83	64.7	2660	4111	yes	13.1	17.8	yes	
2	7.6	61	91.3	4340	4754	yes	16.2	22.2	yes	
3	7.6	61	93.6	3391	3623	yes	18.4	21.7	yes	
4	6.2	80	79.4	1862	2344	yes	16.7	19.1	yes	
5	7.6	67	79.5	2858	3596	yes	13.1	17.0	yes	
6	7.6	67	79.1	3117	3943	yes	15.0	18.9	yes	
7	5.5	99	87.3	4465	5114	yes	15.0	16.5	yes	
8	7.9	76	85.4	3006	3518	yes	15.4	18.7	yes	
9	7.9	76	81.9	3710	4528	yes	15.7	17.2	yes	
10	6.4	102	97.2	4185	4306	no	16.9	16.6	no	
11	7.5	353	97.9	5073	5184	no	16.4	16.6	no	
12	7.2	157	100.1	5534	5526	no	15.6	16.1	no	
13	5.5	131	97.8	4813	4920	no	16.1	16.8	no	
14	6.4	330	97.8	4887	4998	no	17.3	16.6	no	
15	6.9	88	88.7	3292	3710	yes	14.7	16.0	yes	
16	7.0	94	89.3	3178	3559	yes	15.2	16.5	ves	
17	7.2	96	90.4	5191	5742	yes	15.4	15.9	no	
18	6.2	72	93.3	3647	3908	no	14.6	17.8	ves	
19	7.6	201	96.9	4398	4539	no	17.3	18.2	ves	
20	7.3	146	90.6	3638	4013	ves	18.5	18.4	no	
21	7.2	267	98.1	3630	3699	no	18.4	19.0	no	
22	6.9	78	100.6	3980	3955	no	16.3	17.1	ves	
23	7.6	76	94.2	4029	4278	no	17.1	18.2	ves	
24	7.3	161	96.9	4603	4748	no	18.9	19.1	no	
25	7.2	60	77.3	3410	4410	ves	13.6	16.5	ves	
26	8.0	103	87.6	4375	4992	ves	14.5	15.4	ves	
27	7.8	135	87.4	4109	4702	ves	14.6	16.4	ves	
28	8.2	105	87.2	3962	4543	ves	14.1	15.5	ves	
29	7.7	408	99.4	3661	3683	no	20.5	21.2	ves	
30	6.2	115	95.7	3981	4162	Ves	15.5	16.1	no	
31	7.2	87	89.8	3978	4430	Ves	14.9	15.4	Ves	
32	7.9	95	91.3	3881	4249	ves	15.8	16.4	no	
33	7 7	90	99.8	3852	3861	po	18.4	18.1	no	
34	63	163	103.3	3720	3600	no	20.5	21.3	no	
35	6.6	139	91.6	3600	3930	Ves	18.8	19.5	no	
36	73	153	86.2	2310	2680	yes ves	14.1	17.6	Ves	
37	67	133	100.2	4300	4270	yes	17.8	18.4	yes	
38	6.7	170	96.0	3350	3490	no	17.0	10.4	yes	
30	6.2	212	96.0	3720	3840	no	18.3	19.4	NOS	
40	6.2	154	90.9	3720	2240	Noc	10.3	19.5	yes	
40	6.0	1.14	93.2	4800	4660	yes	10.2	19.7	yes	
41	6.2	140	103.0	4000	4000	HO	16.2	19.7	TIO	
42	6.7	100	09.0 02 E	3060	3460	yes	10.5	10.1	yes	
43	0.7	102	92.5	2100	2270	no	17.4	20.3	yes	
44	7.2	150	96.5	2760	2860	no	23.5	24.3	no	
45	7.6	234	100.0	2890	2890	no	21.5	21.9	no	
46	6.6	133	84.9	2860	3370	yes	16.6	17.8	yes	
4/	6./	196	100.9	4400	4360	no	19.6	20.4	no	
48	5./	162	98.8	4120	41/0	no	20.7	22.5	yes	
49	6.3	1/3	98.4	2430	24/0	no	18.0	18.1	no	
50	6.5	1/0	92.2	35/0	38/0	yes	20.0	21.2	yes	
51	6.4	141	94.9	3930	4140	no	15.8	16.8	yes	
52	6.2	134	99.5	4270	4290	no	20.2	20.8	no	
53	6.7	117	89.2	2890	3240	yes	16.8	17.4	no	

Table 2. Selected soil chemical property and relative	ve seed yield means of soybean that received no fertilizer K and actual yield	d and
seed-K concentration means of soybean as affected	d by K fertilization for each site.	

continued on next page.

Table 2. continued.

		Soil-test K		Seed yield		Seed-K concentration			
Site†	Soil pH	conc.‡§	RSY¶	No K	+K#	Response++	No K	+K#	Response++
54	5.5	86	93.8	3920	4180	yes	18.4	19.8	yes
55	6.2	117	100.2	4640	4630	no	18.8	20.1	no
56	6.6	128	102.6	4390	4280	no	18.6	19.3	no
57	7.4	140	100.3	3750	3740	no	18.5	18.9	yes
58	6.9	188	92.2	3190	3460	yes	18.8	19.6	no
59	6.9	119	83.4	2920	3500	yes	15.0	16.7	yes
60	6.3	96	97.3	4300	4420	no	18.4	20.0	yes
61	6.9	97	90.3	4390	4860	yes	16.7	18.8	no
62	6.9	97	84.4	3190	3780	yes	16.2	18.1	yes
63	5.9	115	100.3	3880	3870	no	18.9	18.8	no
64	6.2	215	111.0	4930	4440	no	19.1	20.5	yes
65	6.2	133	121.4	4540	3740	no	15.9	16.8	no
66	6.9	166	100.0	4690	4690	no	21.1	21.8	yes
67	6.3	227	100.6	4880	4850	no	16.7	17.9	no
68	6.3	42	90.9	2390	2630	yes	14.9	17.0	yes
69	7.2	128	99.4	3460	3480	no	17.6	17.9	no
70	7.2	85	98.1	3110	3170	no	17.6	17.9	no
71	6.1	54	95.0	2470	2600	no	15.3	16.8	yes
72	6.8	88	93.3	3470	3720	yes	16.5	17.3	yes
73	_	84	96.9	3490	3600	no	17.0	17.5	yes
74	_	84	98.6	3520	3570	no	17.2	17.3	no
75	_	84	95.1	3530	3710	no	16.4	16.7	no
76	_	84	97.0	3510	3620	no	16.3	16.8	yes
77	_	143	101.0	3160	3130	no	18.9	18.9	no
78	_	143	99.4	3130	3150	no	18.8	18.9	no
79	_	143	95.3	2820	2960	no	16.7	17.0	yes
80	_	143	98.0	2880	2940	no	16.8	16.9	yes
81	6.6	41	79.5	1550	1950	yes	13.8	17.0	yes
82	6.4	40	87.1	2220	2550	yes	13.6	16.4	yes
83	6.0	64	100.4	2640	2630	no	17.3	18.1	yes
84	6.6	41	84.6	2640	3120	yes	14.2	17.0	yes
85	6.4	40	82.2	2220	2700	yes	13.2	16.2	yes
86	6.0	64	89.1	2780	3120	no	17.4	18.2	yes
87	6.6	41	87.2	2180	2500	yes	14.2	16.4	yes
88	6.4	40	87.8	2300	2620	yes	13.4	16.0	yes
89	6.0	64	99.3	3030	3050	no	16.8	18.2	yes
90	6.6	102	63.6	1400	2200	yes	12.7	13.8	yes
91	6.6	102	57.9	1100	1900	yes	12.9	13.4	no
92	_	108	106.0	2454	2316	no	18.9	19.5	yes
93	-	108	92.8	2303	2482	no	19.9	20.5	yes
94	-	108	99.4	1073	1080	no	16.5	17.3	yes
95	-	_	95.2	2333	2450	yes	19.6	20.7	yes
96	-	_	98.3	2772	2821	no	20.9	21.0	no
97	-	_	84.2	1053	1250	yes	15.8	17.3	yes
98	6.1	64	72.4	2469	3410	yes	14.8	15.3	yes
99	7.2	73	53.9	1852	3437	yes	13.9	16.8	yes
100	6.9	30	48.7	1596	3276	yes	15.7	18.2	yes

+ The literature reference for each site is listed in Table 1.

‡ Soil samples for soil-test K concentration were collected from 0- to 10-cm soil depth for Sites 1–33, 73–89, and 98 and from 0- to 15-cm soil depth for Sites 34–72, 90–97, and 99. No soil sample depth was provided for Site 100.

§ Soil-test K was extracted by Mehlich-3 for Sites 1–33 and 90–91, NH₄OAc for Sites 34–89 and 98–99, and Mehlich-1 for Sites 92–97 and 100. No soil-test K information for Sites 95–97 was provided.

Relative seed yield of the plants without K fertilizer was calculated by dividing the untreated control yield (numerator) by the highest yield produced by soybean receiving fertilizer K (denominator) and multiplying by 100.

The seed yield and seed-K concentration listed for each site represent the greatest numerical seed actual yield and seed-K concentration among K fertilization treatments.

++ Seed yield and seed-K concentration were significantly increased by K fertilization at the 0.10 probability level for Sites 1–67 and 0.05 probability level for Sites 68–100.

listed in Table 1). In general, a subsample of harvested seed was oven-dried and ground. Seed or ash was digested, and the sample was analyzed for K concentration using spectroscopy. Although the procedures for processing and analyzing seed varied among the studies, the assumption made for this analysis is that the differences in final seed-K concentrations caused by different analytical methods were relatively small.

Statistical Analysis

The relationships between relative seed yield and seed-K concentration of soybean receiving no fertilizer K were assessed with linear, quadratic, and linear-plateau (LP) models using the GLM or NLIN procedures of SAS (Version 9.4, SAS Institute). The LP model consistently had the lowest residual sums of squares and the highest R^2 values among the models evaluated. Therefore, relationships defined only by the LP model will be presented. The relationships between relative yield and seed-K concentration were evaluated for each geographic location having enough sites for meaningful analysis (e.g., 33 site-years for Arkansas, 34 site-years for Iowa, and 24 site-years for Canada) and for all geographic locations grouped together (e.g., North America = 100 site-years) (Tables 1 and 2). The relationships between seed-K and soil-test K concentrations and seed-K difference (seed K of soybean that received fertilizer K minus seed K of soybean that received no fertilizer K) and soil-test K concentration for Arkansas, Iowa, Canada, and for the North America were evaluated using the same statistical procedures. The Studentized residuals distribution for each regression was tested to identify outliers. When the Studentized residual was greater than ± 2.5 for a site, the data point was removed, and the regression was rerun after removing the outliers.

For each geographic area, seed-K concentration thresholds for the deficient, low (e.g., critical range), and sufficient seed-K levels were calculated using the 95% confidence limits (CL) of the LP model join point. Seed-K concentrations greater than the upper critical range threshold were defined as sufficient, and concentrations below the lower critical range threshold were considered deficient. Seed-K concentrations within the critical range (95% CL) were considered low.

RESULTS AND DISCUSSION Relationships between Relative Seed Yield and Seed Potassium Concentration

Arkansas

The average seed yield of irrigated soybean at the 33 Arkansas sites was 3900 kg ha⁻¹ for soybean receiving no fertilizer K and 4292 kg ha⁻¹ for soybean receiving fertilizer K. Irrigated soybean receiving no fertilizer K had relative yields that ranged from 64.7 to 100.6% and seed-K concentrations from 13.1 to 20.5 g K kg⁻¹ (Table 2; Fig. 1a). The initial model that considered all site-years showed that seed K plateaued at 16.0 g K kg⁻¹, had a 95% CL range of 15.1 to 16.9 g K kg⁻¹, and explained 55% of the relative yield variability. The final regression between relative soybean yield and seed-K concentration was determined using 32 of the 33 sites because Site 4 was identified as an outlier and was omitted from the regression (Tables 1 and 2). Soybean seed-K concentration accounted for 66% of the variability in relative yield among the 32 sites (Table 3; Fig. 1a). Relative yield increased linearly as seed-K concentration increased and plateaued when the seed-K concentrations reached 16.3 g K kg⁻¹ (Table 3). The critical range as defined by the 95% CL of the join point corresponded to seed-K concentrations of 15.6 to 17.0 g K kg⁻¹. Seed-K concentrations \leq 15.5 g K kg⁻¹ were deficient, and ≥ 17.1 g K kg⁻¹ were sufficient. The accuracy of the deficient, low, and sufficient seed-K levels was assessed by determining the percentage of positive yield responses that occurred within each seed-K level (Table 4; Fig. 1a). Among the 33 Arkansas sites, significant yield responses to fertilizer K were measured at 14 of 15 sites with deficient seed-K concentrations (for the seed from soybean that received no fertilizer K), four of nine sites with low seed K, and two of nine sites that had sufficient seed-K levels (Table 4). The absolute yield difference attributed to fertilizer K was greatest for soybean having deficient seed K and least for sites with sufficient seed-K concentrations (Table 4).

lowa

Unirrigated soybean receiving no fertilizer K at 34 sites in Iowa had relative yields of 83.4 to 121.4% and seed-K concentrations of 14.1 to 23.5 g K kg⁻¹ (Table 2; Fig. 1b). The actual seed yields of soybean grown with and without fertilizer K averaged 3698 and 3810 kg ha⁻¹, respectively, across the 34 sites. The initial model that considered all Iowa site-years explained only 16% of the relative yield variability and predicted that seed K plateaued at 19.1 g K kg⁻¹. Site 65 was identified as an outlier and omitted from the final dataset used to regress relative yield with seed-K concentration. Seed-K concentration explained 48% of the variability in relative yield among the 33 Iowa sites (Table 3; Fig. 1b). Relative soybean yield plateaued when seed-K concentration was 18.7 g K kg⁻¹. The predicted critical range of seed-K concentration was 17.4 to 20.0 g K kg⁻¹. The defined seed-K levels were reasonably accurate in correctly identifying whether soybean benefited from fertilizer K. Soybean at 7 of 10 sites having deficient seed-K concentrations benefited from fertilizer K with an 8% mean seed yield increase (Table 4).

Canada

Seed yield across the 24 sites in Canada averaged 2708 kg ha^{-1} when no fertilizer K was applied and 2943 kg ha^{-1} when soybean received fertilizer K, an 8.7% difference (Table 2). Soybean receiving no fertilizer K produced relative yields of 57.9 to 101.0% of the yield produced by soybean receiving fertilizer K and had seed-K concentrations ranging from 12.7 to 18.9 g K kg⁻¹ (Fig. 1c). The LP model, fit across 23 sites (Site 91 removed as an outlier), explained 78% of the variability in relative soybean yield (Table 3). The predicted critical seed-K concentration range was 14.6 to 16.2 g K kg⁻¹. The accuracy of the defined categories for identifying K responsive sites was numerically similar

Fig. 1. Relationship between relative soybean yield and seed-K concentration as predicted with linear-plateau (LP) model across (a) 33 sites (Sites 1–33) in Arkansas; (b) 34 sites (Sites 34–67) in lowa; (c) 24 sites (Sites 68–91) in Ontario, Canada; and (d) 100 sites (Sites 1–100) in North America. Responsive (R) or unresponsive (U) indicates whether or not soybean seed yield was significantly increased by fertilizer K at the 0.10 probability level for Sites 1 to 67 and at the 0.05 probability level for Site 68 to 100 and is shown in Table 2. Site 4 [Responsive (O)] for Arkansas, 65 [Unresponsive (O)] for lowa, 91 [Responsive (O)] for Canada, and 65 [lowa (U, O)], 99 [Missouri (R, O)], and 100 [Virginia (R, O)] for North America were identified as outliers and omitted from the statistical analysis. The two vertical dashed lines indicate the critical or low seed-K concentration thresholds. The LP model coefficients and the low seed-K concentration thresholds for each geographic location are listed in Table 3.

to that observed for Arkansas and slightly better than defined for the Iowa sites (Table 4). The frequency and magnitude of yield benefit from fertilizer K declined as seed-K concentrations moved from deficient to low to sufficient. The dataset from Canada contained only two sites within the critical range, of which one site responded to fertilizer K. Despite the lack of sites within the critical range, all sites classified as deficient benefitted from fertilizer K, and only 1 of 14 sites within the sufficient seed-K level responded positively to fertilizer K.

North America

The relative yield of soybean receiving no fertilizer K ranged from 48.7 to 121.4% and seed-K concentrations were 12.7 to 23.5 g K kg⁻¹ (Table 2; Fig. 1d). Averaged across all 100 sites in North America, soybean receiving no fertilizer K produced a mean yield of 3373 kg ha⁻¹, compared with 3643 kg ha⁻¹ when fertilizer K was applied. The LP model showed a significant relationship between relative soybean yield and seed-K concentration when all sites were considered and showed that seed K plateaued at 17.1 g K kg⁻¹, had a 95% CL of 16.3 to 17.9 g K kg⁻¹, and explained 46% of the relative yield variability. However, three sites—one in Iowa (Site 65), one in Missouri (Site 99), and one in Virginia (Site 100)—were identified as outliers and omitted from the dataset, and the model was refit. Soybean seed-K concentration accounted for 60% of the variability in relative yield (Table 3; Fig. 1d). The revised model predicted the critical seed-K concentration as 17.1 g K kg⁻¹ with a 95% CL of 16.5 to 17.7 g K kg⁻¹.

The deficient seed-K level was reasonably accurate at identifying K responsive sites, with 77% of the sites showing a significant yield benefit to fertilizer K that averaged 485 kg ha⁻¹ (Table 4). Soybean having low or sufficient seed-K concentrations responded positively to fertilizer K at 23 or 24% of the sites within each category. Although a similar percentage of sites classified as low and

	Coeffi	cients		Join _I	point	95% confiden	ce limits (CL)‡
Model†	Intercept	Slope	R^2	SKC	RSY	Lower CL	Upper CL
				g K kg ⁻¹	%	— д К	kg ⁻¹ —
Arkansas							
LP	-10.3	6.552	0.66	16.3	96.5	15.6	17.0
SE	17.6	1.172	_	0.4	4.6	_	_
lowa							
LP	34.6	3.427	0.48	18.7	98.6	17.4	20.0
SE	15.0	0.874	_	0.6	4.5	_	_
Canada							
LP	-35.0	8.565	0.78	15.4	97.0	14.6	16.2
SE	25.8	1.849	_	0.4	4.1	-	-
North America							
LP	7.8	5.250	0.60	17.1	97.7	16.5	17.7
SE	9.6	0.625	_	0.3	5.6	_	_
+ La ala ma a dal (D)	CV interrept (al.		ionificant at the	0.0001	Laura I		

Table 3. I	Relationship	between se	oybean seed-K	concentration	(SKC) and	I relative seed	yield (RS	Y) as predicted	with the	inear-pla-
teau (LP)) model.							-		-

+ Each model [RSY = intercept + (slope \times SKC)] was significant at the 0.0001 probability level.

Seed-K concentration (SKC) thresholds for the deficient, low (e.g., critical range), and sufficient seed-K levels were calculated using the 95% CL of the LP model join point. Seed-K concentrations below the lower CL threshold were considered deficient and concentrations greater than the upper CL threshold were considered sufficient. Seed-K concentrations within the CL were considered low.

sufficient benefitted from fertilizer K, the average yield increase was 5% within the low level and 2% within the sufficient level. The K responsive sites within the sufficient seed-K level originated in Arkansas (2), Tennessee (1), and Iowa (5). The majority of the false-negative errors (positive seed yield response to fertilizer K by soybean having a mean seed-K concentration defined as K sufficient) were from soybean grown in Iowa, which suggests that geographic-specific interpretation of seed-K concentrations may be needed for some soybean-producing regions. The seed-K concentrations of the five Iowa sites showing false-negative errors were classified as low for the Iowa-specific interpretation (Table 4). The two Arkansas sites were false-negative errors within the Arkansas-specific and North America interpretations. The one site from Tennessee showing a false-negative error for the North America dataset interpretation would have been within the sufficient seed-K level for the Arkansas and Canada interpretations and within the critical range for the Iowa interpretation (Table 3). Specific reasons why the interpretation of Iowa seed-K concentrations tended to be different are unknown but could be related to the fact that the absolute yield increases attributed to fertilizer K tended to be smaller than for Canada and Arkansas (Table 4).

The deficient seed-K level was reasonably accurate for predicting whether soybean responded positively to fertilizer K with false-positive errors occurring at 23% of the sites (Table 4) with no consistent error associated with seed-K concentrations from a specific region (two in Arkansas, zero in Canada, five in Iowa, and one in Tennessee). With the exception of Iowa-specific guidelines, the deficient seed-K levels for Arkansas, Canada, and North America were quite accurate at identifying when soybean yield would be significantly increased by fertilizer K. Because a number of factors can influence crop yield, information used to diagnose plant nutritional maladies are not required to be perfect. However, the diagnostic information should have a high rate of success at correctly identifying nutrient sufficiency, deficiency, or both.

The overall average seed-K increase from fertilizer K was 1.9 g K kg^{-1} for the deficient category (<16.5 g K kg⁻¹ as defined by the seed-K concentration of soybean receiving no fertilizer K) and 0.8 g K kg⁻¹ for seed in the critical and sufficient categories. Although seed-K concentration was sometimes increased by up to 6.0 g K kg⁻¹, the average increase from fertilization was not great enough to elevate seed-K concentrations above the defi-

Table 4. The frequency of yield increase to K fertilization, mean relative yield of soybean receiving no fertilizer K, and the average yield increase to fertilizer K across 33 sites in Arkansas, 34 sites in Iowa, 24 sites in Canada, and 100 sites in North America for deficient, low, and sufficient seed-K concentrations levels.

Location+	nt Frequency of yield increase		Mea	n relative	yield	Yield increase‡			
	Deficient	Low	Sufficient	Deficient	Low	Sufficient	Deficient	Low	Sufficient
		- % of sites –		% of	maximum	yield ——		— kg ha ⁻¹ -	
Arkansas	93	44	22	86	93	96	614	265	150
lowa	70	28	0	92	98	100	263	63	0
Canada	100	50	7	79	93	97	491	185	94
North America	77	24	23	86	95	98	485	172	59

⁺ The low seed-K concentration thresholds as defined by regression analyses was 15.6–17.0 g K kg⁻¹ for Arkansas, 17.4–20.0 g K kg⁻¹ for Iowa, 14.6–16.2 g K kg⁻¹ for Canada, and 16.5–17.7 g K kg⁻¹ for North America (Table 3).

* Yield increase is the average difference between soybean that received fertilizer K and soybean that received no fertilizer K for all sites (responsive and unresponsive) within each seed-K concentration level (deficient, low, and sufficient) of each geographic location.

cient ($\geq 16.5 \text{ g K kg}^{-1}$) threshold in 16 of the 44 site-years identified as deficient (Table 3). Thus, identification of possible K deficiency using seed-K concentrations must be done with caution and perhaps interpreted along with field-specific information such as soil-test K concentration, fertilizer-K rate applied, and factors that influence K uptake by plants.

The ability to confidently identify what is not a problem can be equally as important as identifying the specific problem. Although specific reasons for the false-positive and false-negative errors are not evident, the errors could be associated with analytical errors or seed subsampling errors. Parvej et al. (2016) reported that seed-K concentrations declined from the bottom to the top of the plant with the greatest differences occurring when K was yield limiting. Soybean cultivars of different maturity groups with different genetic backgrounds are grown among the geographic locations represented in this dataset. Genetics, environment, or production practices could all be sources contributing to the differences in seed-K thresholds among geographic regions (Sale and Campbell, 1987). Although the diversity represented in the 100 sites in North America may contribute to the falsepositive and false-negative errors, the robust database makes the information more applicable across a wide geographic area.

Soybean seed nutrient concentrations have been used to diagnose S, Mn, Zn, B, Cu, and Mo deficiencies (Cox, 1968; Hitsuda et al., 2004, 2010; Lavy and Barber, 1963; Parker et al., 1981; Reinbott et al., 1997; Wiersma, 2005). However, there was no literature describing the relationship between seed yield and seed-K concentration for soybean or other crops. Mallarino and Higashi (2009) attempted to diagnose K deficiency of corn using mature seed- and stalk-K concentrations but reported no significant correlation between relative corn yield and seed- or stalk-K concentrations. Clover and Mallarino (2013) noted that grain-K concentration in corn was less frequently affected by fertilizer K than the seed-K concentration of soybean.

Relationships between Seed and Soil Potassium Concentrations

Several researchers have suggested that when soybean seed-K concentrations are increased by fertilizer K, yield increases from fertilization are likely to occur (Clover and Mallarino, 2013; Slaton et al., 2013). The data assembled to examine seed K as a postharvest means of diagnosing K deficiency allow us to evaluate how seed-K concentration is affected by soil- and fertilizer-K availability. For the North America sites, the relationship between seed-K and soil-test K concentrations was determined in two separate evaluations using either the seed-K concentration of soybean receiving no fertilizer K (Fig. 2a) or soybean fertilized with K (Fig. 2b). The seed-K concentration of soybean receiving no fertilizer K increased linearly as soil-test K concentration increased to 179 mg K kg⁻¹ and seed-K concentration plateaued at 18.8 g K kg⁻¹ (Fig. 2a). Soil-test K concentration explained 40% of the variability in seed K. For soybean receiving fertilizer K, seed-K concentration increased linearly until soil-test K concentration reached 170 mg K kg⁻¹, at which point seed K plateaued at 19.1 g K kg⁻¹ (Fig. 2b). Soil-test K concentration explained only 24% of the seed-K variability when fertilizer K was applied. The lower R^2 value for soybean receiving fertilizer K was expected because some proportion of the plants' K needs was supplied by a source other than the soil K. The relationships, as defined by quadratic or LP models, for Arkansas-, Iowa-, and Canadaspecific datasets showed that the slope coefficients were not different from zero or that the entire model was not significant

Fig. 2. Relationships between seed-K concentrations of (a) soybean receiving no K fertilizer and (b) K-fertilized soybean and soil-test K concentrations as predicted with a linear-plateau (LP) model across 93 sites (Sites 1–91 and 98–99) in North America. Responsive (R) or unresponsive (U) indicates whether or not soybean seed yield was significantly increased by fertilizer K at the 0.10 probability level for Sites 1 to 67 and 0.05 probability level for Sites 68 to 100 and are shown in Table 2. Sites 2 and 3 [Arkansas (R, O)] for only K-fertilized soybean and Site 44 [lowa (U, O)] for both no–K-fertilized and K-fertilized soybean were identified as outliers and omitted from the statistical analysis. The soil K was extracted by Mehlich-3 for Sites 1 to 33, 90 to 91, and 99 by NH₄OAc for Sites 34 to 89 and 98 and by Mehlich-1 for Sites 92 to 97 and 100 (Table 2). Sites located in Tennessee (Sites 92–97) and Virginia (Site 100) used Mehlich-1 and were omitted from the regression.

for soybean receiving or not receiving fertilizer K (not shown). Simple linear relationships for Arkansas, Iowa, or Canada were either not significant (P > 0.05) or had low coefficients of determination ($R^2 < 0.11$; not shown). The only literature we could find on this subject stated there was no significant relationship between corn seed-K and soil-test K concentrations (Mallarino and Higashi, 2009).

The relationships between seed-K and soil-test K concentrations suggested that fertilizer- and soil-K availability both influence soybean seed-K concentration when soil-test K concentration is <170 to 179 mg K kg⁻¹. To better explain how soil and fertilizer K interact, the seed-K difference (with fertilizer K, – no fertilizer K) was calculated and regressed against soil-test K concentration (Table 5; Fig. 3). The relationship was significant for each of the four geographic locations (Table 5) and showed that the difference in seed-K concentration decreased as soil-test K concentration increased, with seed-K difference plateauing when soil-test K concentration was \geq 87 mg K kg⁻¹ for Arkansas (Fig.

Table 5. Relationship between soybean seed-K concentration difference (SKCD, seed K with fertilizer K minus seed K without fertilizer K) and soil-test K concentration (STKC) as predicted with a linear-plateau (LP) model.

	Coeffic	cients	Join point‡			
Model†	Intercept	rcept Slope		STKC	SKCD	
				mg K kg ⁻¹	g K kg ⁻¹	
Arkansas						
LP	12.7	-0.138	0.72	87	0.63	
SE	2.5	0.035	-	5	0.80	
lowa						
LP	4.0	-0.022	0.37	139	0.89	
SE	0.9	0.007	-	11	0.47	
Canada						
LP	5.6	-0.073	0.94	73	0.32	
SE	0.4	0.009	-	3	0.28	
North America						
LP	3.9	-0.029	0.37	104	0.82	
SE	0.5	0.006	_	8	0.80	

⁺ Each model [SKCD = intercept + (slope \times STKC)] was significant at the 0.0001 probability level.

Fig. 3. Relationships between soybean seed-K concentration difference (seed K with fertilizer K minus seed K without fertilizer K) and soil-test K concentration as predicted with a linear-plateau (LP) model across (a) 33 sites (Sites 1–33) in Arkansas; (b) 34 sites (Sites 34–67) in lowa; (c) 24 sites (Sites 68–91) in Ontario, Canada; and (d) 93 sites (Sites 1–91 and 98–99) in North America. Responsive (R) or unresponsive (U) indicates whether or not soybean seed yield was significantly increased by fertilizer K at the 0.10 probability level for Sites 1 to 67 and at the 0.05 probability level for Sites 68 to 100 (Table 2). Site 1 [Responsive (O)] for Arkansas, 36 [Responsive (O)] and 63 [Unresponsive (O)] for lowa, 90 [Responsive (O)] for Canada, and 1 and 2 [Arkansas (R, O)] and 36 [lowa (R, O)] for North America were identified as outliers and omitted from the statistical analysis. The soil K was extracted by Mehlich-3 for Sites 1 to 33, 90 to 91, and 99 by NH₄OAc for Sites 34 to 89 and 98 and by Mehlich-1 for Sites 92 to 97 and 100 (Table 2). Sites located in Tennessee (Sites 92–97) and Virginia (Site 100) were omitted from the regression for North America. The LP model coefficients for each geographic location are listed in Table 5.

3a), ${\geq}139~\text{mg}~\text{K}~\text{kg}^{-1}$ for Iowa (Fig. 3b), ${\geq}73~\text{mg}~\text{K}~\text{kg}^{-1}$ for Canada (Fig. 3c), and $\geq 104 \text{ mg K kg}^{-1}$ for North America (Fig. 3d). As with the relationship between seed K and relative yield, the specific reasons for the different critical soil-test K concentration values among geographic locations are not clear. However, the amount of soil K extracted by ammonium acetate and Mehlich-3 is known to be affected by soil drying (Barbagelata and Mallarino, 2013; Martins et al., 2015). Drying soil before extraction can significantly increase the soil-test K concentration. The differences in the amount of K extracted from field-moist and dry soil can be substantial and is well documented for soils from Iowa (Barbagelata and Mallarino, 2013; Luebs et al., 1956) and Arkansas (Martins et al., 2015). This phenomenon may be responsible for many of the false-negative and false-positive yield responses observed, especially for soils that had a relatively high soil-test K concentration.

CONCLUSIONS

The relationship between relative soybean seed yield and seed-K concentration from 100 K fertilization trials conducted across diverse conditions and soybean production systems in North America showed that seed-K concentration can be used to diagnose K deficiency. The results supported our prediction and showed that soybean seed-K concentration explained 48 to 78% of the variability in relative seed yield. The critical seed-K concentrations ranged from 14.6 to 20.0 g K kg⁻¹ for specific geographic sites (Arkansas, Iowa, and Canada) and averaged 16.5 to 17.7 g K kg⁻¹ when data from all the site-years in North America were considered. Based on the 100 site-years of research, the proposed deficient (<16.5 g K kg⁻¹) seed-K concentration correctly identified fields that responded positively to fertilizer K 77% of the time. Fertilizer- and soil-K availability both influenced soybean seed-K concentration but only when soil-K availability was <170 to 179 mg K kg⁻¹. Although seed analysis is not helpful for identifying and correcting K deficiency during the growing season, as a postharvest tool, seed analysis may be of value for diagnosing potential reasons for lower than expected yields and correcting K deficiency for subsequent crops.

ACKNOWLEDGMENTS

This research was funded by the Arkansas Soybean Checkoff Program administered by the Arkansas Soybean Promotion Board, Fertilizer Tonnage Fees, and the University of Arkansas System Division of Agriculture.

REFERENCES

- Barbagelata, P.A., and A.P. Mallarino. 2013. Field correlation of potassium soil test methods based on dried and field-moist soil samples for corn and soybean. Soil Sci. Soc. Am. J. 77:318–327. doi:10.2136/sssaj2012.0253
- Beegle, D.B., and T.C. Oravec. 1990. Comparison of field calibrations for Mehlich 3 P and K with Bray-Kurtz P1 and ammonium acetate K for corn. Commun. Soil Sci. Plant Anal. 21:1025–1036. doi:10.1080/00103629009368288
- Bellaloui, N., X. Yin, A. Mengistu, A.M. McClure, D.D. Tyler, and K.N. Reddy. 2013. Soybean seed protein, oil, fatty acids, and isoflavones altered by potassium fertilizer rates in the Midsouth. Am. J. Plant Sci. 4:976–988. doi:10.4236/ajps.2013.45121
- Binford, G.D., A.M. Blackmer, and N.M. El-Hout. 1990. Tissue test for excess nitrogen during corn production. Agron. J. 82:124–129. doi:10.2134/agr

onj1990.00021962008200010027x

- Binford, G.D., A.M. Blackmer, and B.G. Meese. 1992. Optimal concentrations of nitrate in cornstalks at maturity. Agron. J. 84:881–887. doi:10.2134/ag ronj1992.00021962008400050022x
- Brouder, S.M., D.B. Mengel, and B.S. Hofmann. 2000. Diagnostic efficiency of the blacklayer stalk nitrate and grain nitrogen tests for corn. Agron. J. 92:1236–1247. doi:10.2134/agronj2000.9261236x
- Clover, M.W., and A.P. Mallarino. 2013. Corn and soybean tissue potassium content responses to potassium fertilization and relationships with grain yield. Soil Sci. Soc. Am. J. 77:630-642. doi:10.2136/sssaj2012.0223
- Coale, F.J., and J.H. Grove. 1990. Root distribution and shoot development in no-till full-season and double-crop soybean. Agron. J. 82:606–612. doi:10.2134/agronj1990.00021962008200030034x
- Cox, F.R. 1968. Development of a yield response prediction and manganese soil test interpretation for soybeans. Agron. J. 60:521–524. doi:10.2134/agron j1968.00021962006000050023x
- Fehr, W.R., C.E. Caviness, D.T. Burmood, and J.S. Pennington. 1971. Stage of development descriptions for soybeans, *Glycine max* (L.) Merrill. Crop Sci. 11:929–931. doi:10.2135/cropsci1971.0011183X001100060051x
- Fernández, F.G., S.M. Brouder, C.A. Beyrouty, J.J. Volenec, and R. Hoyum. 2008. Assessment of plant-available potassium for no-till, rainfed soybean. Soil Sci. Soc. Am. J. 72:1085–1095. doi:10.2136/sssaj2007.0345
- Fryer, M.S. 2015. Validation of soil-test-based phosphorus and potassium fertilizer recommendations for rice and soybean. M.S. thesis. Univ. of Arkansas, Fayetteville.
- Gartley, K.L., J.T. Sims, C.T. Olsen, and P. Chu. 2002. Comparison of soil test extractants used in mid-Atlantic United States. Commun. Soil Sci. Plant Anal. 33:873–895. doi:10.1081/CSS-120003072
- Helmke, P.A., and D.L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. In: D.L. Sparks, editor, Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI. p. 551–574.
- Hitsuda, K., G.J. Sfredo, and D. Klepker. 2004. Diagnosis of sulfur deficiency in soybean using seeds. Soil Sci. Soc. Am. J. 68:1445–1451. doi:10.2136/ sssaj2004.1445
- Hitsuda, K., K. Toriyama, G.V. Subbarao, and O. Ito. 2010. Percent relative cumulative frequency approach to determine micronutrient deficiencies in soybean. Soil Sci. Soc. Am. J. 74:2196–2210. doi:10.2136/sssaj2010.0158
- Jones, G.D., J.A. Lutz, and T.J. Smith. 1977. Effects of phosphorus and potassium on soybean nodules and seed yield. Agron. J. 69:1003–1006. doi:10.2134/ agronj1977.00021962006900060024x
- Lavy, T.L., and S.A. Barber. 1963. A relationship between the yield response of soybeans to molybdenum applications and the molybdenum content of the seed produced. Agron. J. 55:154–155. doi:10.2134/agronj1963.0002196 2005500020019x
- Luebs, R.E., G. Stanford, and A.D. Scott. 1956. Relation of available potassium to soil moisture. Soil Sci. Soc. Am. Proc. 20:45–50. doi:10.2136/ sssaj1956.03615995002000010011x
- Mallarino, A.P., and S.L. Higashi. 2009. Assessment of potassium supply for corn by analysis of plant parts. Soil Sci. Soc. Am. J. 73:2177–2183. doi:10.2136/ sssaj2008.0370
- Mallarino, A.P., J.E. Sawyer, and S.K. Barnhart. 2013. A general guide for crop nutrient and limestone recommendations in Iowa. PM1688. Iowa State Univ. Ext. Outreach, Ames. https://store.extension.iastate.edu/Product/ A-General-Guide-for-Crop-Nutrient-and-Limestone-Recommendationsin-Iowa (accessed 11 Oct. 2015).
- Mallarino, A.P., J.R. Webb, and A.M. Blackmer. 1991. Soil test values and grain yields during 14 years of potassium fertilization of corn and soybean. J. Prod. Agric. 4:562–566.
- Martins, P.O., N.A. Slaton, T.L. Roberts, and R.J. Norman. 2015. Comparison of field-moist and oven-dry soil on Mehlich-3 and ammonium acetate extractable soil nutrient concentrations. Soil Sci. Soc. Am. J. 79:1792– 1803. doi:10.2136/sssaj2015.03.0094
- Nelson, K.A., P.P. Motavalli, and M. Nathan. 2005. Response of no-till soybean [*Glycine max* (L.) Merr.] to timing of preplant and foliar potassium applications in a claypan soil. Agron. J. 97:832–838. doi:10.2134/ agronj2004.0241
- Oltmans, R.R., and A.P. Mallarino. 2015. Potassium uptake by corn and soybean, recycling to soil, and impact on soil test potassium. Soil Sci. Soc. Am. J. 79:314–327. doi:10.2136/sssaj2014.07.0272
- Parker, M.B., F.C. Boswell, K. Ohki, L.M. Shuman, and D.O. Wilson. 1981.

Manganese effects on yield and nutrient concentration in leaves and seed of soybean cultivars. Agron. J. 73:643–646. doi:10.2134/agronj1981.000 21962007300040018x

- Parsons, K.J., V.D. Zheljazkov, J. MacLeod, and C.D. Caldwell. 2007. Soil and tissue phosphorus, potassium, calcium, and sulfur as affected by dairy manure application in a no-till corn, wheat, and soybean rotation. Agron. J. 99:1306–1316. doi:10.2134/agronj2006.0243
- Parvej, M.R., N.A. Slaton, L.C. Purcell, and T.L. Roberts. 2015. Potassium fertility effects yield components and seed potassium concentration of determinate and indeterminate soybean. Agron. J. 107:943–950. doi:10.2134/agronj14.0464
- Parvej, M.R., N.A. Slaton, L.C. Purcell, and T.L. Roberts. 2016. Soybean yield components and seed potassium concentration responses among nodes to potassium fertility. Agron. J. 108:854–863. doi:10.2134/agronj2015.0353
- Reinbott, T.M., D.G. Blevins, and M.K. Schon. 1997. Content of boron and other elements in main stem and branch leaves and seed of soybean. J. Plant Nutr. 20:831–843. doi:10.1080/01904169709365299
- Sale, P.W.G., and L.C. Campbell. 1987. Differential responses to K deficiency among soybean cultivars. Plant Soil 104:183–190. doi:10.1007/ BF02372531
- Sikora, F.J. 2004. Conversion equations for soil test extractants: Mehlich-1 and Mehlich-3. Southern regional fact sheet. Univ. of Kentucky, Lexington. http://soils.rs.uky.edu/M3vsM1.htm (accessed 24 Jan. 2015).
- Sims, J.T. 1989. Comparison of Mehlich 1 and Mehlich 3 extractants for P, K, Ca, Mg, Mn, Cu and Zn in Atlantic Coastal Plain soils. Commun. Soil Sci. Plant Anal. 20:1707–1726. doi:10.1080/00103628909368178
- Slaton, N.A., B.R. Golden, R.E. Delong, and M. Mozaffari. 2010. Correlation and calibration of soil potassium availability with soybean yield and trifoliolate

potassium. Soil Sci. Soc. Am. J. 74:1642–1651. doi:10.2136/sssaj2009.0197

- Slaton, N.A., T.L. Roberts, B.R. Golden, W.J. Ross, and R.J. Norman. 2013. Soybean response to phosphorus and potassium supplied as inorganic fertilizer or poultry litter. Agron. J. 105:812–820. doi:10.2134/ agronj2012.0490
- Small, H.G., Jr., and A.J. Ohlrogge. 1973. Plant analysis as an aid in fertilizing soybeans and peanuts. In: L.M. Walsh and J.D. Beaton, editors, Soil testing and plant analysis. SSSA, Madison, WI. p. 315–328.
- Terman, G.L. 1977. Yields and nutrient accumulation by determinate soybean, as affected by applied nutrients. Agron. J. 69:234–238. doi:10.2134/agronj1 977.00021962006900020010x
- Vyn, T.J., X. Yin, T.W. Bruulsema, C.J.C. Jackson, I. Rajcan, and S.M. Brouder. 2002. [*Glycine max* (L.) Merr.] potassium fertilization effects on isoflavone concentrations in soybean. J. Agric. Food Chem. 50:3501–3506. doi:10.1021/jf0200671
- Warncke, D., and J.R. Brown. 1998. Potassium and other basic cations. In: J.L. Brown, editor, Recommended chemical soil test procedures for the North Central region. North Central Regional Publ. 221 (rev.). Missouri Exp. Sta. Publ. SB 1001. Univ. of Missouri, Columbia. p. 31–33.
- Wiersma, J.V. 2005. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybean. Agron. J. 97:924– 934. doi:10.2134/agronj2004.0309
- Yin, X., and T.J. Vyn. 2002. Residual effects of potassium placement and tillage systems for corn on subsequent no-till soybean. Agron. J. 94:1112–1119. doi:10.2134/agronj2002.1112
- Yin, X., and T.J. Vyn. 2003. Potassium placement effects on yield and seed composition of no-till soybean seeded in alternate row widths. Agron. J. 95:126–132. doi:10.2134/agronj2003.0126