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Abstract
The concept of soil health has evolved over the past several decades, recognizing

that dynamic soil property response to management and land use is highly depen-

dent on site-specific factors that must be considered when interpreting soil health

measurements. Initially, the Soil Management Assessment Framework (SMAF) and

Comprehensive Assessment of Soil Health (CASH) were developed and used glob-

ally for scoring soil health indicators. However, both SMAF and CASH frameworks

were developed using a relatively small dataset and their interpretation curves were

not validated at the nationwide scale. Expanding upon these concepts, we propose

the Soil Health Assessment Protocol and Evaluation (SHAPE) tool. The SHAPE was

developed using 14,680 soil organic C (SOC) observations from across the United

States, and accounts for edaphic and climate factors at the continental scale. Data

were compiled from the literature, the Cornell Soil Health Laboratory, and the Kel-

logg Soil Survey Laboratory. In this approach, scoring curves are Bayesian model-

based estimates of the conditional cumulative distribution function (CDF) for defined

soil peer groups reflecting five soil texture and five soil suborder classes adjusted for

mean annual temperature and precipitation. Specifically, SHAPE produces scores

between 0 and 1 (0–100%) for measured SOC values that reflect the quantile or posi-

tion within the conditional CDF along with measures of uncertainty. Herein, we focus

on development of the SHAPE scoring curve for SOC with our case studies. SHAPE

is a flexible, quantitative tool that provides a regionally relevant interpretation of this

key soil health indicator.

Abbreviations: AI, de Martone aridity index; AS, aggregate stability;

CASH, Comprehensive Assessment of Soil Health; CDF, cumulative

distribution function; LOI, loss on ignition; MAP, mean annual

precipitation; MAT, mean annual temperature; PET, potential

evapotranspiration; SHAPE, Soil Health Assessment Protocol and

Evaluation; SOC, soil organic carbon; SOM, soil organic matter content;

SMAF, Soil Management Assessment Framework; WI, wetness index.
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1 INTRODUCTION

Soil health refers to the ability of a specific soil to perform

multiple functions that include cycling of nutrients, sustain-

ing productivity, maintaining biodiversity, regulating water

dynamics, and moderating climate (Karlen et al., 1997). Cur-

rent interest in soil health is mostly driven by the recognition
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that anthropogenic influences are increasingly superimposed

on natural soil quality. Ecosystem services are the direct and

indirect contributions of ecosystems to human well-being and

are inherently difficult to measure directly due to high cost

and spatial and temporal variability; however, a wide range of

soil health indicators, including chemical, physical, and bio-

logical soil properties (e.g., Doran and Parkin, 1996; Stott,

2019) have been identified as proxy measurements. Among

them, soil organic C (SOC) is a keystone indicator, reflecting

multiple soil functions and ecosystem services. Although it is

widely recognized that climatic and edaphic factors are deter-

minants of soil C content (Bardgett, 2011; Post et al., 2004),

land use and management practices have a significant impact

on soil C dynamics.

The interactions among inherent and dynamic soil bio-

logical, physical, and chemical properties and processes are

complex and must be quantified when assessing management

effects on soil health. To facilitate such quantifications across

land use and management practices, an interpretive frame-

work that provides a wide range of regionally relevant indi-

cator options is needed (Wander et al, 2019), such as a multi-

indicator soil health index. This index must also (a) account

for inherent site-specific factors, (b) be sensitive to anthro-

pogenic activities, and (c) facilitate broad-scale monitoring to

ensure sustainable land management (Doran, 2002).

Many indices have been developed for soil health assess-

ment (e.g., Andrews et al., 2004; De Paul Obade & Lal,

2016; Haney et al., 2018; Idowu et al., 2009; Rinot et al.,

2019), but none are universally accepted (Bünemann et al.,

2018). One example is the Soil Management Assessment

Framework (SMAF), which integrates multiple biological,

chemical, and physical soil health indicators by transforming

measured values into unitless (0–1) scores (Andrews et al.,

2004). The SMAF algorithms were built to be sensitive to

several site-specific factors (i.e., soil taxonomy, climate,

crop type, topography, sampling season) that influence a

soil’s potential to support critical functions. The SMAF has

been used globally, although the conceptual framework for

indicator interpretation was derived using a relatively small

dataset representing four U.S. states: Georgia, California,

Wisconsin, and Iowa. The Comprehensive Assessment of

Soil Health (CASH) is another tool that scores multiple soil

health measurements using cumulative normal distributions

of a regional dataset from the northeastern United States

(Idowu et al., 2009). Recently, CASH algorithms were

expanded to include soils from other U.S. regions, including

the Midwest and Mid-Atlantic (Fine et al., 2017), but the

spatial extent is still limited and the curves do not reflect the

national or global distribution of soils.

To further advance science-based soil health assessments,

it is essential to develop indexing tools that handle multi-

ple soil attributes and describe relevant soil health status for

multiple types of soil (Bünemann et al., 2018). Develop-

Core Ideas
∙ Response of soil health (SH) indicators to land use

and management is site-specific.

∙ Soil Health Assessment Protocol and Evaluation

(SHAPE) is proposed as a flexible tool.

∙ The SHAPE builds upon conceptual frameworks

established by the SMAF and CASH protocols.

∙ The SHAPE provides SH interpretation for soil

peer groups based on edaphic and climatic factors.

∙ This tool provides knowledge about the status of

soils in response to agronomic practices.

ment of a new assessment framework can be based on sta-

tistical approaches (e.g., minimum dataset, principal compo-

nent analysis, decision trees, and ANOVA), expert opinion, or

expert-based frameworks (Andrews et al., 2004; Fine et al.,

2017; Ritz et al., 2009). To be useful and interpretable for

producers and landowners, the selected soil health indicators

must: (a) represent chemical, biological, and physical soil pro-

cesses; (b) detect variations in soil functions due to manage-

ment and land-use decisions; (c) be assessable and cost effec-

tive; and (d) reflect the connection between soil functions and

management targets (i.e., agricultural productivity, ecosystem

services).

The SMAF has scoring curves for four biological (SOC,

microbial biomass C, potentially mineralizable N, and beta-

glucosidase [β-G]); four physical (bulk density, aggregate sta-

bility [AS], available water capacity, and water-filled pore

space); and five chemical soil properties (pH, electrical con-

ductivity, sodium adsorption ratio, and extractable P and

K) (Andrews et al., 2004). The CASH was designed for

broader use with lower cost and includes physical (AS, avail-

able water capacity, and penetration resistance); biological

(organic matter content [SOM], autoclaved citrate-extractable

protein, respiration, and active-C); and chemical (pH and

nutrient concentration) soil properties (Moebius-Clune et al.,

2016). Within CASH and SMAF, biological indicators reflect

the amount and quality of SOM, the size and activity of the

microbial community, nutrient cycling and storage, soil struc-

ture, and provision of food for edaphic organisms, among

other soil functions and processes (Lal, 2016; McDaniel et al.,

2014; Tiemann et al., 2015). Soil physical properties relate

to plant growth, water dynamics, erosion resistance, nutri-

ent retention, rhizosphere processes, resilience to drought or

temperature fluctuations, mitigation of nonpoint source pol-

lutants, and agronomic productivity (Lal, 2016; Nunes et al.,

2019). The soil chemical indicators reflect acidity and nutrient

availability as a guide to soil fertility management and envi-

ronmental protection.
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Following selection, measurement, and interpretation of

measured soil health indicators, the unitless values can be

used to develop one or more indices (Bünemann et al., 2018)

depending on what the assessment is being used for. Typically,

the values represent the status of a specific indicator relative

to (a) threshold or reference values, (b) one or more specific

soil functions, or (c) a dataset of measured soil health indi-

cator values. These relationships are established using non-

linear curves that can be defined and calibrated in several

ways. For example, SMAF thresholds were primarily based

either on expert opinion or taken from published literature

(Andrews et al., 2004), whereas CASH thresholds were empir-

ically derived based on data distributions for each soil health

indicator within a regional dataset (Fine et al., 2017). In con-

trast to the SMAF and CASH approach, some indices (e.g.,

the Haney test; Haney et al., 2018) use raw measured values or

projections from a model-specific outcome, such as biomass

production (e.g., De Paul Obade and Lal, 2016) or relative

crop yield (Biswas et al., 2017; Lopes et al., 2013) to estab-

lish threshold values.

Rinot et al. (2019) stressed that linking soil health indicator

values with ecosystem services is a laudable goal that would

supply rich and meaningful information from an ecological

perspective, but quantitative data to assess those complex

relationships is lacking at several spatial and temporal scales.

For example, water quality or greenhouse gas emission data

are costly and difficult to obtain at scales needed to develop

interpretations for those important soil health functions.

Also, indicator scores and interpretations can be inconsistent

or easily manipulated when based on expert opinion or

inappropriate statistical methods (Bünemann et al., 2018).

Furthermore, optimal threshold values will often vary or

present trade-offs among soil functions or ecosystem services

(i.e., crop productivity vs. environmental protection) and are

dependent on scale (Simpson, 2016). This can cause signifi-

cant factors to be overlooked at the continental scale if indices

are only developed using regional or site-specific datasets.

Karlen et al. (2019) documented how the soil health con-

cept evolved over the past several decades and emphasized the

need to scientifically advance monitoring and assessment pro-

tocols by (a) improving indicator scoring tools, (b) develop-

ing national monitoring protocols, and (c) identifying new soil

biological, chemical, and physical indicators of soil health.

They also stressed that producer interest in soil health mon-

itoring and regionally relevant interpretation remains strong.

To meet those needs, the USDA–NRCS and USDA–ARS ini-

tiated a meta-analysis project focused on indicator interpreta-

tion and tool development.

A national database was compiled using soil health data

from 456 published studies. Meta-analysis techniques were

applied to assess effects of anthropogenic activities on soil

health indicators and examine potential interactions among

management practices and inherent soil conditions (i.e., soil

type, climate condition, soil texture, soil depth, cropping sys-

tem, duration of the experiment among other factors [Nunes,

Karlen, & Moorman, 2020; Nunes, Karlen, Moorman, &

Cambardella, 2020; Nunes, Karlen, Veum, Moorman, &

Cambardella, 2020]). Results confirmed that the soil health

indicators used in SMAF and CASH were sensitive to changes

induced by anthropogenic factors, but anomalies emerged at

the continental scale, emphasizing the need to review and

improve indicator scoring curves (Karlen et al., 2019). The

comprehensive database thus provided the foundation for our

first step toward development of an improved soil health eval-

uation (i.e., Soil Health Assessment Protocol and Evaluation

[SHAPE]).

The soil genesis concepts outlined by Jenny (1941) illus-

trate the five dominant soil forming factors (i.e., time, par-

ent material, vegetation, climate, and topography) that inter-

act to determine inherent conditions. These factors influence

soil properties and processes and are incorporated into the soil

taxonomy (Soil Survey Staff, 1999). For example, in addition

to dynamic factors, the SOC content is determined by climate

variables, such as moisture and temperature, that are key fac-

tors controlling plant growth, decomposition of organic mate-

rials, and ultimately SOC content (Jobbagy & Jackson, 2000;

Post et al., 2004; Trumbore, 1997). Thus, as with SMAF and

CASH, SHAPE development was motivated by the knowl-

edge that the response of dynamic soil properties to manage-

ment was highly dependent on inherent, site-specific factors

(Karlen et al., 1997). Those conclusions were also consistent

with recommendations from other meta-analyses (i.e., Baker

et al., 2007; Bowles et al., 2016; Graaff et al., 2019; Haddaway

et al., 2017; Luo et al., 2010; McDaniel et al., 2014).

Although SMAF and CASH were designed to account

for inherent site characteristics, both used relatively small

and geographically limited datasets. Furthermore, multiple

assessments identified potential scoring curve problems at the

regional scale, including both overestimation and underesti-

mation of SOC, β-G, and AS scores (Mbuthia et al., 2015;

Nunes, Karlen, Veum, & Moorman, 2020; Stott et al., 2013;

Veum et al., 2015; Zobeck et al., 2015) that likely reflected

dataset limitations and a need to improve how edaphic and cli-

mate information is used to modify the scoring curves. Thus,

compared with SMAF and CASH, SHAPE was based on a

substantially larger and more representative dataset.

Our ultimate goal continues to be the development of a bet-

ter, comprehensive soil health index that accounts for con-

tinental variation in climate and inherent soil conditions,

while remaining sensitive to field-scale land use and man-

agement practices. Our broad objectives were to: (a) reeval-

uate the inherent factors and classes used in SMAF and

CASH to convert measured values into scores; (b) develop

new scoring curves for soil health indictors including SOC,

β-G, AS, autoclaved citrate-extractable protein, active-C, and

respiration, among others, based on the peer group approach
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F I G U R E 1 Location of sites where soil organic C data for different agricultural production systems were compiled and compared within the

conterminous United States for the Soil Health Assessment Protocol Evaluation from the Comprehensive Assessment of Soil Health (CASH), the

NRCS Kellogg Soil Survey Lab (NRCS), and the published datasets

(a unique combination of soil suborder group and texture class

adjusted for temperature and precipitation); and (c) create a

new soil health tool that provides a quantitative and interpre-

tive score with associated measures of uncertainty. Specif-

ically, this manuscript discusses the initial development of

SHAPE, focusing on SOC, as the first in a series of indica-

tor scoring curves.

2 MATERIALS AND METHODS

2.1 Dataset

A dataset consisting of 14,680 SOC observations from across

the conterminous United States was compiled from three

sources: (a) published data for studies throughout the United

States, (b) CASH data samples analyzed by the Cornell Soil

Health Testing Laboratory between 2014 and 2018, and (c)

NRCS data from samples analyzed by the NRCS Kellogg Soil

Survey Laboratory in Lincoln, NE. A description of each data

source is provided below.

2.1.1 Published data

This portion of the dataset was previously described by Nunes,

Karlen, Veum, Moorman and Cambardella (2020). Briefly,

the data were compiled using a literature search with key-

words (a) soil health or soil quality, plus (b) cropping system,

soil tillage, residue management, cover crop, crop rotation,

soil fertility or fertilizer. For inclusion in the dataset, publica-

tions had to (a) present soil health indicators from perennial

ecosystems or studies comparing multiple treatments such as

tillage intensity or cropping system diversification, (b) be con-

trolled (i.e., replicated) studies, (c) be written in English, and

(d) be conducted in the United States. Duplications, unpub-

lished studies, non–peer-reviewed papers, and studies present-

ing results only in graphs were excluded. Concentration val-

ues (i.e., g kg–1) rather than stocks (i.e., volumetric or areal

measurements such as Mg ha–1 or kg m–2 over fixed depth

or soil mass) were used unless BD values were reported that

could be used to convert stock values into concentration units.

Soil organic C values consisted of total organic C or total C

(where soils were shown to be free of carbonates). For data

presented as SOM, values were divided by 1.724 (van Bem-

melen factor) to convert them to SOC (Cambardella et al.,

2001). All values were from the topsoil layer (≤15-cm). In

total, 4,129 SOC observations (456 articles) measured across

the United States (Figure 1) under several land use and agri-

cultural management practices (i.e., tillage intensity, cropping

system, residue management, and addition of amendments

[Supplemental Table S1]) were included in the dataset.

2.1.2 Comprehensive Assessment of Soil
Health data

The CASH dataset considered all samples that contained GPS

information submitted for analysis to the Cornell Soil Health

Laboratory (Ithaca, NY) from 2014 to 2018 (n = 4,183).

Based on CASH sampling guidelines, it was assumed each

data point represented a composite sample collected from

the 0-to-15-cm depth (Moebius-Clune et al., 2016). Only

SOC and soil texture data were used for this study. Based

on CASH protocols, SOM content had been determined by

measuring loss on ignition (LOI) after 2 hr at 500 ˚C in a

muffle furnace. The %LOI was converted to %OM using

the equation (%OM = [% LOI × 0.7] − 0.23). Once again,

we converted SOM to SOC using the van Bemmelen factor

(Cambardella et al., 2001). In contrast with the published

data, which comprises primarily plot-scale experimental

results, most CASH data originated from commercial farms
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F I G U R E 2 Soil organic C (SOC) data distribution with (a) and without (b) Histosols, and mean SOC for each soil order (c) with 0.95%

confidence intervals (horizontal bars) across the United States

and represent several tillage and agroecosystems across the

United States (Supplemental Table S1).

2.1.3 Natural Resources Conservation
Service data

This dataset was derived from samples submitted for soil

characterization to the NRCS Kellogg Soil Survey Labora-

tory in Lincoln, NE (n = 6,368) and contain GPS location

information. Natural Resources Conservation Service records

were queried for surface and mineral A horizons using the

National Cooperative Soil Survey Characterization Database.

This database contains over 38,000 pedons with measured

chemical and physical properties representing geographically

diverse soils from across the conterminous United States,

Hawaii, and Alaska. Those samples were generally collected

by NRCS soil scientists and cooperating universities, usu-

ally for soil survey activities and landscape characterization.

Land use and management were not known for all locations,

but generally reflected the most common scenarios where the

samples were collected. Only SOC and soil texture data were

used for this study. The SOC content was determined by dif-

ference between the total C (dry combustion) and CaCO3–

C (electronic manometer method), and particle size is deter-

mined by the pipette method and sieving (Soil Survey Staff,

2014). Soil taxonomic classifications (i.e., soil suborder) from

the soil profile descriptions were also used and are defined in

Soil Survey Staff (1999).

2.1.4 Combined SOC dataset

Data from the three sources (Figure 1) were combined to pro-

vide 14,680 SOC values ranging from 1 to 530 g kg–1 (0.1–

53%) from across the United States (Figure 2a). Compared

with the original SMAF (Andrews et al., 2004) and CASH

(Fine et al., 2017) development protocols, scoring curves

derived from this comprehensive dataset provided a larger,

more geographically diverse representation of SOC values

from across the continental United States (Figure 1). Further-

more, SOC observations within the dataset also represented

a larger range of land uses (i.e., native grassland, forest soils,

and agricultural production) and practices reflecting variable

tillage intensity, crop residue management, and addition of

amendments.

2.2 Inherent soil and climate variables

Soil and climate variables with potential to affect top-

soil SOC were linked to each SOC observation in the

dataset (Table 1). Soil variables included order, subor-

der, texture, and drainage class. Overall, the dataset repre-

sented 10 taxonomic orders, 57 suborders, 12 soil texture

classes, and eight soil drainage classes (Table 1; Supplemental

Table S2). Climate variables included mean annual precipita-

tion (MAP), mean annual temperature (MAT), potential evap-

otranspiration (PET), de Martone aridity index (AI; Equa-

tion 1), and the wetness index (WI; Equation 2).

AI = MAP
(MAT + 10)

(1)

WI = MAP
PAT

(2)

The combined dataset represented a wide range of MAT

(from −5.6 to 25.3 ˚C), MAP (from 42 to 3,671 mm), PET

(from 845 to 2,539 mm yr–1), AI (from 1.64 to 305.5), and WI

(from 0.03 to 4.16) (Table 1). Several additional rainfall and

vegetation variables (e.g., growing degree days) were consid-

ered but not selected for evaluation.
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T A B L E 1 Description of the inherent covariates evaluated for use in the Soil Health Assessment Protocol Evaluation SOC scoring curves

Inherent covariates Unit Source Type Range N
Climate –

Mean annual precipitation mm USGS quantitative 42–3,671 –

Mean annual temperature ˚C USGS quantitative −5.6–25.3 –

Potential evapotranspiration mm yr−1 UMNTSG quantitative 845–2,539 –

Wetness index – calculated quantitative 0.03–4.16 –

de Martone aridity index – calculated quantitative 1.64–305.5 –

Soil

Order – gSSURGO categorical – 10

Suborder – gSSURGO categorical – 57

Texture class – gSSURGO categorical – 12

Drainage class – gSSURGO categorical – 8

Note. USGS, United States Geological Survey; UMNTSG, University of Montana Numerical Terradynamic Simulation Group; gSSURGO, Gridded Soil Survey Geo-

graphic Database.

The site-specific variables were obtained using the

location (latitude and longitude) from a complement of

environmental coverages. Soil variables were assigned using

Gridded Soil Survey Geographic Database. Climate vari-

ables were from USGS or were supplied directly from arti-

cles (specifically for the published dataset) or by calculation

(AI and WI). Soil survey information was extracted for the

dominant map unit at each given location. In summary, the

final database (all three datasets combined) was composed of

nine inherent variables (five quantitative and four categorical)

with SOC as the target response variable (Table 1), totaling

14,680 topsoil SOC observations from across the continental

United States (Figure 1). The number of observations by soil

order, suborder, texture, and drainage classes is presented in

Supplemental Table S2.

2.3 Data analyses

All statistical analyses were performed using R software ver-

sion (R Core Team, 2020). Multiple exploratory analyses were

conducted to assess distributional properties of the dataset,

including the number of SOC observations within each level

(class) of categorical variables (Table 1; Supplemental Table

S2), and for each land use and agricultural management prac-

tice in the published and CASH datasets (Supplemental Table

S1). Linear regression, correlation analysis, exploratory data

analysis, and subsequent modeling as described below were

pursued.

2.3.1 Evaluation of edaphic and climate
variables

Sensitivity of SOC to inherent factors used in SMAF (five tex-

ture classes, four suborder classes, and four climate classes,

as presented in Table 2 [Andrews et al., 2004]) and CASH

(three soil texture classes as presented in Supplemental

Table S3 [Fine et al., 2017]) were initially evaluated by fitting

various linear regression models. Mean SOC values for each

class were plotted with the 95% confidence interval assuming

normality.

The first linear model (Equation 1) included two categorical

soil variables (texture [Table 2], suborder [Table 3]) and five

continuous climate variables [Table 1]). Soil suborder class

S1 was predominantly represented by the Histosols, which

form in organic rather than mineral materials and have unique

characteristics including SOC concentrations exceeding 95 g

kg–1 (9.5%). Since there were only 175 S1 samples out of

14,680 observations, they were removed from the dataset for

a separate modeling effort. Thus, for mineral soils the final

dataset contained 14,505 observations.

SOC𝑖 = β0 + MAT𝑖β1 + MAP𝑖β2 + PET𝑖β3 + AI𝑖β4

+WI𝑖β5 +
𝑇∑

𝑡 = 1
𝐼
(
Texture𝑖 = 𝑡

)
β6𝑡

+
𝑆∑

𝑠 = 1
I
(
Suborder𝑖 = 𝑠

)
β7s + ε𝑖

Equation 1 contained several correlated climate variables

that likely represented similar variation in SOC. Therefore, we

explored multiple techniques to select the best climate vari-

ables for scoring tool development. Initial variable selection

for inclusion in the model was done using a combination of

exploratory data analysis. A best subset regression with the R

package “leaps” (Lumly, 2020) was used to identify the best

climate prediction variables for which only five were consid-

ered as SOC predictors within the full model. The “leaps”

approach considers all possible subsets of covariates before

selecting the model that minimizes some criteria, for which

we considered adjusted R2 and Schwarz information criterion.
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T A B L E 2 Inherent soil and climate factor groups used to determine the soil organic C (SOC) indicator index value, as originally presented in

the Soil Management Assessment Framework (Andrews et al., 2004)

Class Soil texture
Class T1 sand, loamy sand, sandy loam (with <8% clay)

Class T2 sandy loam (with clay >8%), sandy clay loam, loam

Class T3 silt loam, silt

Class T4 sandy clay, clay loam, silty clay loam, silty clay, clay (<60%)

Class T5 clay (>60%)

Suborder class soil taxonomy suborder

Class S1 Aquands, Histels, Turbels, Fibrists, Folists, Hemists, Saprists, Aquoxs, Aquods

Class S2 Udands, Ustands, Aquepts, Albolls, Aquolls, Borolls, Cryolls, Rendolls, Udolls, Ustolls, Xerolls, Udoxs, Humods,

Aquults, Humults, Aquerts, Xererts

Class S3 Aqualfs, Boralfs, Cryalfs, Udalfs, Ustalfs, Xeralfs, Cryands, Vitrands, Aquents, Orthels, Andepts, Anthrepts, Cryods,

Cryerts

Class S4 Torrands, Xerands, Argids, Calcids, Cambids, Cryids, Durids, Gypsids, Orthids, Salids, Arents, Fluvents, Orthents,

Psamments, Xerents, Cryepts, Ochrepts, Tropepts, Udepts, Umbrepts, Ustepts, Xerepts, Orthoxs, Peroxs, Torroxs,

Ustoxs, Orthods, Udults, Ustults, Xerults, Torrerts, Usterts, Uderts

Climate class Degree days Precipitation

˚F (˚C) mm

Class C1 ≥170 (76.7) ≥550

Class C2 ≥170 (76.7) <550

Class C3 <170 (76.7) ≥550

Class C4 <170 (76.7) <550

Note. Soil texture class 1 represents the texture groups that have the lowest intrinsic potential for sequestering SOC, while class 5 has the highest (Quisenberry et al.,

1993). Soil suborder class 1 represents the suborders that are expected to have the highest potential for sequestering SOC, while class 4 has the lowest. Climate class 1

represents the climate class that has the lowest intrinsic SOC, while class 4 has the highest.

T A B L E 3 New soil taxonomy suborder classes selected for the Soil Health Assessment Protocol Evaluation soil organic C (SOC) curve

Class Soil taxonomy suborder
S1 Fribists, Folists, Hemists, Histels, Saprists, Wassists

S2 Aquands, Aquents, Aquepts, Aquods, Aquoxs, Cryods, Humods, Orthels, Peroxs, Torrands, Tropepts, Turbels, Udands, Udoxs,

Ustands

S3 Albolls, Andepts, Aquolls, Aquults, Cryands, Cryepts, Cryolls, Gelepts, Gelolls, Humults, Rendolls, Umbrepts, Ustoxs,

Vitrands, Wassents, Xerands

S4 Aqualfs, Aquerts, Boralfs, Borolls, Cryalfs, Ochrepts, Orthods, Orthoxs, Udalfs, Udepts, Uderts, Udolls, Usterts, Ustolls,

Xeralfs, Xerepts, Xerolls, Xerults

S5 Arents, Argids, Calcids, Cambids, Cryerts, Cryids, Durids, Fluvents, Gypsids, Orthents, Orthids, Psamments, Salids, Torrerts,

Torroxs, Udults, Ustalfs, Ustepts, Ustults, Xererts

Note. Class S1 represents suborders that are expected to have the highest potential for sequestering SOC, while Class S5 has the lowest.

We also used random forest modeling and stepwise regression

to identify variable importance. Both techniques yielded sim-

ilar results. The final selection of variables was incorporated

into SHAPE, where goodness-of-fit is more formally eval-

uated. Summarily, exploratory data analysis in conjunction

with subject matter expertise was used only for initial stages

of model development.

3 RESULTS AND DISCUSSION

3.1 Response of SOC to SMAF climate and
soil suborder classes

The SMAF–SOC scoring curve approach assumed inher-

ent SOC content increased from coarse (T1) to fine (T5)
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F I G U R E 3 Soil organic C (SOC) as a function of five soil textural classes (a), four soil suborders (b), and four climate classes (c) as used in the

Soil Management Assessment Framework (Table 2), and three soil texture classes as used in Comprehensive Assessment of Soil Health ([d];

Supplemental Table S1). Horizontal bars represent the 95% confidence interval (based on normality)

textural classes. Similarly, CASH assumed SOM increases

from texture class T1 to T3 (Supplemental Table S3).

Those overall trends were confirmed in the new, combined

dataset (Figure 3a,d); thus, the five original SMAF tex-

tural classes were used for SHAPE–SOC scoring curve

development. Similarly, the original SMAF soil taxonomy

suborder factor was used, which consisted of four classes

(Table 2) based on expert opinion regarding the potential

for an individual suborder to sequester C (Andrews et al.,

2004). The SMAF procedures presumed that inherent SOC

concentration increased from soil suborder class S4 to S1.

This assumption was partially supported by the combined

dataset, which showed SOC values followed the order S4

= S3 < S2 < S1 (Figure 3b). This likely contributed to the

underestimation or overestimation of SOC scores observed

by several SMAF assessments (e.g., Mbuthia et al., 2015;

Nunes, Karlen, Veum, & Moorman, 2020; Stott et al.,

2013; Zobeck et al., 2015). To improve SHAPE, suborder

groupings were reassigned into five classes (Table 3).

They now show inherent topsoil SOC values increasing

from S5 to S1, as confirmed by the comprehensive dataset

(Figure 4).

For climate, SMAF combined MAT and MAP into four

broad classes (Table 2) that were parameterized assuming

that as temperature and precipitation increased, SOC would

decrease due to greater decomposition rates (Andrews et al.,

2004). Therefore, it was expected that SOC content would

increase from climate class C1 to C4, but again this expecta-

tion was not confirmed by the combined dataset (Figure 3c).

A significant reason for this discrepancy was a positive rela-

tionship between MAP and SOC (Supplemental Figure S1a)

in contrast to the negative relationship assumed by Andrews

et al. (2004). Indeed, climate is known to be one of the con-

trolling factors for SOC content, but the role varies on a global

scale (Bardgett, 2011; Xiong et al, 2014). Thus, the climate

factors used in SMAF to score SOC content were reevaluated.
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F I G U R E 4 Soil organic C (SOC) as a function of the new soil

taxonomy suborder classes selected for the Soil Health Assessment

Protocol Evaluation SOC curve. Horizontal bars represent the 95%

confidence interval (based on normality)

3.2 Final edaphic and climate variables

The exploratory analysis confirmed that the nine inherent fac-

tors presented in Table 1 were likely good predictors of top-

soil SOC content (Supplemental Figures S1–S4). For exam-

ple, topsoil SOC tended to increase with MAP, AI, and WI,

and decrease with MAT and PET (Supplemental Figure S1),

but due to redundancy it is neither efficient nor desirable to

simultaneously include all climate factors. Thus, to simplify

the soil health interpretation, a subset of inherent variables

was selected using results of exploratory statistical methods.

Regarding edaphic variables, the original five soil texture

classes used in the SMAF (Table 2) provided adequate infor-

mation on soil characteristic trends, and given the size of our

dataset, a sufficient number of observations could be main-

tained in each class (Figure 3a). Also, the size of our dataset

enabled us to use the five soil suborder classes presented in

Table 3 and Figure 4. Use of soil suborders provided more spe-

cific taxonomic and soil property information than soil order

(Soil Survey Staff, 2014).

Among climate variables, MAT and MAP were selected

over PET, AI, and WI. Soil drainage class, which refers

to the frequency and duration of wet periods in soils dur-

ing their formation (Soil Survey Staff, 2014), was consid-

ered but not selected due to its relationship with soil texture,

which was already included in the model. Our Random For-

est exploratory analyses supported those selections as soil tex-

ture class emerged as the best predictor followed by MAT and

soil suborder class (Supplemental Figure S5). Collectively,

those results confirmed that soil type (i.e., suborder and tex-

ture) definitely affect topsoil SOC and should be considered

in the interpretation of results. A similar conclusion emerged

when stepwise regression was used to rank the importance

of model variables (Supplemental Figure S6). It showed that

using both MAT and MAP provided the best prediction of

SOC based on the Schwarz information criterion. Therefore,

the new SHAPE scoring curves for interpreting topsoil SOC

include inherent soil factors, including soil texture (Table 2),

suborder class (Table 3), and continuous MAT and MAP

values.

3.3 Bayesian regression model

A Bayesian linear regression model, implemented with

standalone code using the R statistical software program,

was used to develop the new SHAPE–SOC scoring curves

based on the final composite dataset (n = 14,505). It provided

an estimated conditional cumulative distribution function

(CDF) representing each sample’s “peer group” as defined

by a unique combination of categorical factors (suborder

[Table 3] and texture [Table 2]) in combination with con-

tinuous MAT and MAP data. This approach assumes the

dataset is representative both in range and distribution of

SOC for each peer group across the climatic conditions.

This assumption is more accurate for some peer groups than

others, and further model validation will likely identify soil

peer groups where more SOC data are needed. The SHAPE

is a significant step forward toward a more precise and

accurate assessment of potential SOC and, by association,

soil health assessment. Furthermore, model assumptions such

as normality of residuals and heteroscedasticity were evalu-

ated, whereby we confirmed differences in variation among

soil peer groups, thus confirming the need to account for

heteroscedasticity.

A likelihood function accounting for differences in varia-

tion among these groups is:

𝑦𝑖,𝑡,𝑠
ind∼ N

(
𝐱′𝑖,𝑡,𝑠𝛃, σ2𝑡,𝑠

)
, 𝑖 = 1, … , 𝑁

where N(⋅,⋅) represents a normal distribution. The response

value (SOC) is represented by yi,t,s for soil sample i with tex-

ture category t and suborder s. As stated previously, soil peer

groups are comprised of unique combinations of texture and

suborder classes, where the response variance differs for each

group. The p-dimensional vector of covariates, xi,t,s, contains

T = 5 texture category indicators, S − 1 = 3 suborder cat-

egory indicators, as well as continuous values of MAT and

MAP. Note that one level of soil suborder is dropped from the

linear model for identifiability purposes.

Fitting a model as described above provides an estimate

of the mean and variance associated with each conditional

peer group CDF while accounting for the continuous cli-

mate covariates. Thus, for a given combination of inherent
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F I G U R E 5 Selected SHAPE–SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T1 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

factors, the resulting conditional CDF is evaluated to provide

the quantile of a new SOC value within that specific peer

group distribution. This is then referred to as the soil health

indicator score. In short, the model provides a unitless score

representing the probability of being less than or equal to the

observed value. The soil health score for a new SOC value of

yi,t,s is calculated as the conditional probability of observing

SOC values less than or equal to yi,t,s within the given peer

group. This may be written as:

𝐹𝑦𝑖,𝑡,𝑠

(
𝑦𝑖,𝑡,𝑠

)
= Φ

(
𝑦𝑖,𝑡,𝑠 − 𝐱′𝑖,𝑡,𝑠𝛃

σ𝑡,𝑠

)

where Φ() is the CDF of a standard normal distribution.

In summary, our primary objective is to identify a condi-

tional CDF of yi,t,s, given 𝐱′𝑖,𝑡,𝑠, and not necessarily the model

parameters themselves.

If the model parameters were known, it would be simple to

generate a CDF using the above equation, but in practice, the

parameters must be estimated. Doing so is possible by using a

weighted least squares approach to maximize the likelihood.

While this approach also enables the user to quantify uncer-

tainty associated with the estimated CDF, it is cumbersome

and requires a bootstrap procedure. For each iteration of the

bootstrap, an estimate of the model parameters is made, and a

corresponding conditional CDF is generated.

Alternatively, uncertainty can be quantified as a byprod-

uct of a Bayesian model fitting procedure after placing prior

distributions on the model parameters. As this alleviates the

need for bootstrap techniques, we propose using this method,
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F I G U R E 6 Selected SHAPE–SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T2 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

for which the Bayesian scoring model is:

𝑦𝑖,𝑡,𝑠
ind∼ N

(
𝐱′𝑖,𝑡,𝑠𝛃, σ2𝑡,𝑠

)
, 𝑖 = 1, … , N

𝛃 ∼ N
(
0, σ2β𝐈

)

σ2
𝑡,𝑠

ind∼ IG (𝑎, 𝑏) , 𝑡 = 1, … , 𝑇 , 𝑠 = 1, … , 𝑆

where IG( ), represents an Inverse Gamma distribution. Each

element of the p-dimensional vector of coefficients, 𝛃, fol-

lows a normal prior distribution with mean zero and variance

σ2β. This approach also provides independent Inverse Gamma

priors for each peer group variance term, σ2
𝑡,𝑠

. Finally, we

use a vague prior distribution by setting σ2β = 1, 000 and a
= b = 0.1 which allows the data to dominate the parameter

estimates rather than the prior distribution and, thus, imparts

little impact on the resulting analysis. For all accompany-

ing analyses, the Bayesian scoring model was fit via Gibbs

sampling with 1,000 iterations, discarding the first 500 as

burn-in. Convergence was assessed visually through the use

of trace plots of the sample chains, where no lack of conver-

gence was detected.

Model fit was assessed through two methods. The first

was a Bayesian posterior predictive p-value based on the

discriminant (-2*loglikelihood), where values near zero or

one indicate a lack of fit. For this assessment, no lack of fit

was detected. Normal QQ plots of the standardized residuals

were used to assess model fit visually, in terms of the under-

lying distributional assumptions. In this case, slight depar-

tures from normality were detected when treating SOC as the

response.

We also considered the case of transforming the data

before fitting the model. Specifically, when taking the logit

transformation of SOC as the response, the assumption of

normality seemed to hold better as assessed through the
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F I G U R E 7 Selected SHAPE–SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T3 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

QQ plot. The logit transformation is given by logit (𝑥) =
log[𝑥∕(1 − 𝑥)] and has the property of mapping values that are

bounded between zero and one to the real line. Measurements

of SOC are a percentage, and thus are bounded in this way,

with many observed values lying close to zero. By fitting the

model on the logit transformed data, we ensure the conditional

CDF goes to zero as SOC goes to zero. This is in contrast to the

model fit on untransformed data, where positive probability of

SOC less than zero may be indicated. Thus, we advocate for

the use of logit transformed SOC when fitting the Bayesian

scoring model in order to establish appropriate bounds on

the CDF and to better satisfy the normality assumption. In

other words, we now assume that SOC follows a logit normal

distribution.

After fitting the model using logit transformed data, it is

still desirable to make an interpretation based on the original

scale of the data. Since input to the CDF is on the logit trans-

formed scale, a generated CDF curve consists of a collection

of points on the transformed scale as well as their correspond-

ing cumulative probabilities [𝑥∗
𝑗
, 𝐹 (𝑥∗

𝑗
)], 𝑗 = 1, … , 𝐽 . The

results are then mapped back to the original data scale by

replacing 𝑥∗
𝑗

in the first coordinate with its inverse logit trans-

formed value, which is written as logit−1 (𝑥) = 1∕(1 + 𝑒−𝑥).
Thus, the conditional CDF evaluated on the original data scale

consists of the points [logit−1(𝑥∗
𝑗
), 𝐹 (𝑥∗

𝑗
)], 𝑗 = 1, … , 𝐽 .

Ultimately, we end up with an estimated conditional CDF

(using the pointwise posterior mean CDF), the posterior mean

probability of being less than or equal to the observed value, as

well as the entire posterior distribution of conditional CDFs.

The latter allows us to quantify uncertainty using the point-

wise 95% credible intervals obtained from the posterior dis-

tribution of the conditional CDF.
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F I G U R E 8 Selected SHAPE–SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T4 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

3.4 Final SOC scoring curves

Figures 5–9 display 60 examples of the SHAPE–SOC scor-

ing curves representing five soil textures, four suborders,

and three combinations of MAT and MAP (i.e., 20 ˚C–400

mm, 10 ˚C–900 mm, and 0 ˚C–900 mm). Scoring curves

are accompanied by 95% pointwise credible intervals to indi-

cate the level of uncertainty around these estimates. Vertical

bars within each graph represent a SOC concentration of 2%

to illustrate combined effects of soil suborder and climate.

The horizontal bars represent equivalent SOC scores based on

the model. Upon examination, it is evident that for the same

SOC concentration (2%), scores generally increase from fine-

textured soils (T5) to coarse-textured soils (T1), independent

of soil suborder, MAT, and MAP (Figures 5–9). This con-

firms that the new scoring curves are sensitive to soil tex-

ture, a dominant inherent factor affecting topsoil SOC content

(Supplemental Figure S5). Also, a comparison of scores

within the same texture and climate combination, but varying

across soil suborders, shows that for the same SOC concen-

tration value (2%), scores decrease from suborder S5 (lowest

inherent SOC concentration) to suborder S2 (highest inher-

ent SOC concentration). Those changes in scores reflect the

significant effect of soil taxonomy (suborder class) on top-

soil SOC content (Figure 4). Finally, a comparison of scores

within the same peer group (suborder and textural combi-

nation) demonstrates that scores for the same SOC value

decrease from higher to lower temperature and from lower to

higher precipitation. Again, those changes reflect the strong

influence of climate on inherent topsoil SOC content.

The SHAPE approach expands upon the cumulative nor-

mal distribution method used in CASH and provides Bayesian

model-based mean and variance estimates for peer groups to

produce a conditional CDF. The SHAPE thus gains strength
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F I G U R E 9 Selected SHAPE–SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T5 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

from relationships among all dataset variables, as opposed to

calculating a sample mean and SD directly from each peer

group subset. Specifically, this method “borrows strength”

from the fact that continuous (i.e., climate) variables are esti-

mated with the data points across all groups. Furthermore, the

SHAPE provides a natural framework for quantifying uncer-

tainty in the scoring curve and underlying model parame-

ters. The SHAPE also builds on the SMAF framework by

accounting for multiple inherent factors as well as continu-

ous climate variables known to influence soil properties. The

SMAF accounted for those factors using a series of logic state-

ments to create interpretation algorithms where “more is bet-

ter,” “less is better,” or “optimum value” curves were fit to

the data using somewhat arbitrary parameters (i.e., inductive

interpretations or expert opinion). In contrast to the SMAF,

SHAPE does not attempt to adjust scores based on thresh-

olds linked to soil functions or ecosystem services (e.g., the

concept of diminishing returns). That approach requires selec-

tion of specific ecosystem services, access to an associated

dataset with appropriate scope and scale, as well as definable,

quantifiable relationships with measured soil health indica-

tors. For example, the importance of SOC and overall soil

health for drought resilience is moderated by complex interac-

tions between weather patterns and crop genetics (Pareek et al,

2020). From its inception, users of the SMAF have acknowl-

edged that there are multiple benefits and complex tradeoffs

(e.g., provisioning and environmental protection) reflected by

changes in soil health indicator values. Ecosystems provide

multiple services, both tangible and intangible, and the value

of those services is complex and scale dependent (Simpson,

2016). Thus, SHAPE does not weight scores based on rela-

tionships with specific ecosystem services or the valuation of

those services at this time. Rather than adjust scores based

on thresholds linked to a single soil function such as crop
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T A B L E 4 An overview of SHAPE, SMAF, and CASH ANOVA results from a reanalysis of previously published case studies from New York

(NY) (Nunes et al., 2018) and Missouri (MO) (Veum et al., 2015)

State and texture group Treatment SOC% SHAPE CASH SMAF
NY T4 (clay loam) PT 1.81a 0.25b 0.21b 0.89b

NT 2.12a 0.37a 0.37a 0.96a

ANOVA ns * * *

NY T1 (sandy) PT 0.73b 0.20b 0.19b 0.23b

NT 1.23a 0.39a 0.55a 0.61a

ANOVA *** *** *** ***

NY T3 (silt loam) PT–NCC 1.49b 0.20b 0.32b 0.81b

PT–CC 1.55b 0.22b 0.36b 0.84b

NT–NCC 1.69ab 0.29ab 0.46ab 0.88ab

NT–CC 2.12a 0.34a 0.54a 0.93a

ANOVA *** *** *** ***

MO T3 (silt loam) CSG 1.72a 0.47a 0.48a 0.88a

HAY 1.60ab 0.41ab 0.40ab 0.85ab

WSG 1.44bc 0.32bc 0.29abc 0.78abc

NTCSW 1.39bc 0.29bcd 0.26bc 0.75bc

NTCS 1.25cd 0.21cd 0.19c 0.67cd

MTCS 1.22d 0.20d 0.16c 0.61d

ANOVA *** *** *** ***

Note. CC, cover crops; CSG, cool-season grass; Hay, mowed mixed grass; MTCS, mulch-till corn–soybean; NCC, no cover crop; NT, no-till; NTCS, no-till corn–soybean;

NTCSW, no-till corn (Zea mays L.)–soybean–wheat; PT, full width plow tillage; WSG, wheat (Triticum aestivum L.)–soybean [Glycine max (L.) Merr.]–season grass;

SOC concentrations and SHAPE, SMAF, and CASH scores followed by the same letter are not significantly different at α =.05 using Tukey’s HSD.

*Significant at the .05 probability level. ***Significant at the .001 probability level.

yield or water quality, SHAPE takes into consideration the

full range of SOC values for a specific soil group under a spe-

cific climate condition. A repository that can be used to batch

score soil SOC data using the approach described above (i.e.,

SHAPE method) is available at https://github.com/paparker/

SHAPE.

3.5 Sensitivity to management (case
studies)

It is widely recognized that inherent factors (i.e., climate, tex-

ture, and soil suborder) define a soil’s potential SOC content.

The SHAPE accounts for those dominant factors at the conti-

nental scale, but effective soil health indices must also be able

to discriminate among broad land use categories and specific,

field-scale soil and crop management practices to be useful to

policy makers, conservationists, landowners, and producers.

We evaluated the utility of SHAPE for meeting those needs

by reanalyzing four case studies where SOC data had been

scored using the SMAF (Table 4). The first three are from

long-term experiments (20+ yr) comparing continuous no-

tillage and plow-till management on several soil health indica-

tors and corn (Zea mays L.) yield in New York (Nunes et al.,

2018). Inherent conditions associated with the experimental

sites were: Site 1 = texture class T4, soil suborder class S4,

MAP of 760 mm, and MAT of 7.8 ˚C; Site 2 = texture class

T1, soil suborder class S2, MAP of 760 mm, and MAT of

7.8 ˚C; and Site 3 = texture class T3, soil suborder class S4,

MAP of 1,070 mm, and MAT of 7.9 ˚C. Within Site 3, tillage

effects were assessed with and without an interseeded cover

crop. The fourth case study represents an experimental site in

the Central Claypan Region of Missouri (Veum et al., 2015),

for which soil samples were collected in 2008 from the 0-to-

15-cm depth using a RCB design with three blocks. Tillage,

crop rotation, and the perennial nature of the cropping system

were variables at the Missouri site.

Collectively the results show the SHAPE, SMAF, and

CASH discriminated between annual and perennial systems

and were sensitive to management practices (Table 4). Over-

all, SHAPE and CASH scores were similar, while SMAF

generated substantially higher scores among the three tools,

independent of management (Table 4; Supplemental Figure

S7). As previously described, the soil suborder groupings and

reliance on a small dataset of primarily agricultural soils in

SMAF likely explains this discrepancy and the issues with

overestimation identified in other studies. For example, with

the exception of the NY T1 sandy case study, SMAF scores for

https://github.com/paparker/SHAPE
https://github.com/paparker/SHAPE
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SOC suggested soils under more than 20 yr of intensive tillage

and monoculture were high-functioning (scores >0.81). In

contrast, SHAPE indicates that, for the given set of inherent

conditions (soil taxonomy, soil texture, and MAT and MAP),

SOC concentration could be much higher. Therefore, based on

the SHAPE scores, we may conclude that SOC concentration

in those four studied soils could improve depending on land

use and management. These examples are provided simply to

illustrate the utility of the new SHAPE curves and to invite

future studies to evaluate the effects of land use and manage-

ment on SOC using this framework.

4 CONCLUSION

A robust and principled Bayesian statistical foundation for

developing a new soil health assessment interpretation tool

(called SHAPE) was developed and illustrated using new

soil organic C (SOC) scoring curves. The curves were built

using a comprehensive, nationwide dataset with 14,505 SOC

observations. The SHAPE builds upon conceptual frame-

works established by the SMAF and CASH protocols. A suite

of edaphic and climate variables were evaluated to account

for the inherent factors that define a soil’s site-specific SOC

potential across the continental United States. The Bayesian

linear regression model provides a score based on estimated

conditional CDF of each soil’s peer group based on a

combination of categorical factors (soil suborder and texture

class) with adjustments for continuous climate variables.

Reanalysis of published case studies confirmed sensitivity

to land use and field-scale management. Future SHAPE

developments are anticipated in order to generate scoring

curves for multiple soil health indicators, especially as the

comprehensive dataset continues to grow. Full development

of the SHAPE will help meet the growing demand for an

accessible, interpretive, and quantitative scoring curve that

provides regionally relevant knowledge regarding the status

of soils in response to various agronomic and conservation

initiatives.

A C K N O W L E D G M E N T S
This study was supported in part by the United States Depart-

ment of Agriculture (USDA) Natural Resources Conserva-

tion Service (NRCS), ARS Soil Management Assessment

Framework meta-analysis for indicator interpretations and

tool development for use by NRCS Conservation Planners and

by NRCS staff. Thus, we thank the NRCS for supporting this

project. Furthermore, we thank Dr. Cindy Cambardella for the

input and guidance during development of this project. Men-

tion of trade names or commercial products in this publication

is solely to provide specific information and does not imply

recommendation or endorsement by the USDA. The USDA

is an equal opportunity provider and employer.

AU T H O R C O N T R I B U T I O N S
Márcio R. Nunes, Conceptualization, Data curation, Formal

analysis, Investigation, Methodology, Resources, Visualiza-

tion, Visualization, Writing-original draft, Writing-review &

editing; Kristen S. Veum, Conceptualization, Formal anal-

ysis, Investigation, Methodology, Resources, Supervision,

Writing-review & editing; Paul A. Parker, Conceptualization,

Formal analysis, Methodology, Resources, Visualization,

Writing-original draft; Scott H. Holan, Conceptualization,

Formal analysis, Methodology, Resources, Writing-review

& editing; Douglas L. Karlen, Conceptualization, Fund-

ing acquisition, Investigation, Methodology, Project admin-

istration, Resources, Supervision, Writing-review & editing;

Joseph P. Amsili, Conceptualization, Data curation, Formal

analysis, Methodology, Resources, Writing-review & editing;

Harold M. van Es, Conceptualization, Data curation, Method-

ology, Resources, Writing-review & editing; Skye A. Wills,

Conceptualization, Data curation, Methodology, Resources,

Writing-review & editing; Cathy A. Seybold, Conceptual-

ization, Data curation, Methodology, Resources, Writing-

review & editing; Thomas B. Moorman, Conceptualization,

Methodology, Project administration, Resources, Supervi-

sion, Writing-review & editing.

C O N F L I C T O F I N T E R E S T
The authors declare no conflicts of interest.

O R C I D
Márcio R. Nunes https://orcid.org/0000-0002-3674-279X

Kristen S. Veum https://orcid.org/0000-0002-6492-913X

Joseph P. Amsili https://orcid.org/0000-0002-8293-5824

Harold M. van Es https://orcid.org/0000-0001-9822-9476

R E F E R E N C E S
Andrews, S. S., Karlen, D. L., & Cambardella C. A. (2004). The soil

management assessment framework: A quantitative soil quality eval-

uation method. Soil Science Society of America Journal, 68, 1945–

1962. https://doi.org/10.2136/sssaj2004.1945

Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007).

Tillage and soil carbon sequestration–What do we really know? Agri-
culture Ecosystem and Environment, 118, 1–5. https://doi.org/10.

1016/j.agee.2006.05.014

Bardgett, R. D. (2011). Plant-soil interactions in a changing world.

F1000 Biology Reports, 3, 16. https://doi.org/10.3410/B3-16

Biswas, S., Hazra, G. C., Purakayastha, T. J., Saha, N., Mitran, T., Roy,

S. S., Basak, N., & Mandal, B. (2017). Establishment of critical limits

of indicators and indices of soil quality in rice–rice cropping systems

under different soil orders. Geoderma, 292, 34–48. https://doi.org/10.

1016/j.geoderma.2017.01.003

Bowles, T. M., Jackson, L. E., Loher, M., & Cavagnaro T. R.

(2016). Ecological intensification and arbuscular mycorrhizas:

A meta-analysis of tillage and cover crop effects. Journal of
Applied Ecology, 54, 1785–1793. https://doi.org/10.1111/1365-2664.

12815

https://orcid.org/0000-0002-3674-279X
https://orcid.org/0000-0002-3674-279X
https://orcid.org/0000-0002-6492-913X
https://orcid.org/0000-0002-6492-913X
https://orcid.org/0000-0002-8293-5824
https://orcid.org/0000-0002-8293-5824
https://orcid.org/0000-0001-9822-9476
https://orcid.org/0000-0001-9822-9476
https://doi.org/10.2136/sssaj2004.1945
https://doi.org/10.1016/j.agee.2006.05.014
https://doi.org/10.1016/j.agee.2006.05.014
https://doi.org/10.3410/B3-16
https://doi.org/10.1016/j.geoderma.2017.01.003
https://doi.org/10.1016/j.geoderma.2017.01.003
https://doi.org/10.1111/1365-2664.12815
https://doi.org/10.1111/1365-2664.12815


1212 NUNES ET AL.

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., Deyn, G.,

Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulle-

man, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018).

Soil quality–a critical review. Soil Biology and Biochemistry, 120,

105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., & Ket-

tler, T. A. (2001). Estimation of particulate and total organic matter

by weight loss-on-ignition. In R. Lal, J. M. Kimble, R. J. Follett, & B.

A. Stewart (Eds.), Assessment methods for soil carbon (pp. 349–359).

Lewis Publishers/CRC Press.

De Paul Obade V., & Lal, R. (2016). Towards a standard technique for

soil quality assessment. Geoderma, 265, 96–102. https://doi.org/10.

1016/j.geoderma.2015.11.023

Doran, J. W. (2002). Soil health and global sustainability: Translating sci-

ence into practice. Agriculture Ecosystem and Environment, 88, 119–

127. https://doi.org/10.1016/S0167-8809(01)00246-8

Doran, J. W., & Parkin, T. B. (1996). Quantitative indicators of soil qual-

ity: A minimum data set. In J. W. Doran, & A. J. Jones (Eds.), Methods
for assessing soil quality. Soil Science Society of America.

Fine, A. K., van Es, H. M., & Schindelbeck, R. R. (2017). Statistics, scor-

ing functions, and regional analysis of a comprehensive soil health

database. Soil Science Society of America Journal, 81, 589–601.

https://doi.org/10.2136/sssaj2016.09.0286

Graaff, M. A., Hornslein, N., Throop, H., Kardol, P., & van Diepen, L. T.

(2019). Effects of agricultural intensification on soil biodiversity and

implications for ecosystem functioning: A meta-analysis. Advances in
Agronomy, 155, 1–44. https://doi.org/10.1016/bs.agron.2019.01.001

Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E.,

Thomsen, I. K., Jørgensen, H. B., & Isberg, P. E. (2017). How does

tillage intensity affect soil organic carbon? A systematic review. Envi-
ronmental Evidence, 6, 2–48.

Haney, R. L., Haney, E. B., Smith, D. R., Harmel, R. D., & White, M.

J. (2018). The soil health tool–Theory and initial broad-scale appli-

cation. Applied Soil Ecology, 125, 162–168. https://doi.org/10.1186/

s13750-017-0108-9

Idowu, O. J., van Es, H. M., Abawi, G. S., Wolfe, D. W., Schindel-

beck, R. R., Moebius-Clune, B. N., & Gugino, B. K. (2009). Use

of an integrative soil health test for evaluation of soil management

impacts. Renewable Agriculture and Food Systems, 24, 214–224.

https://doi.org/10.1017/S1742170509990068

Jenny, H. (1941). Factors of soil formation: A system of quantitative
pedology. McGraw Hill.

Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil

organic carbon and its relation to climate and vegetation. Ecological
Applications, 10, 423–436. https://doi.org/10.1890/1051-0761(2000)

0100423:TVDOSO2.0.CO;2

Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F., & Nunes,

M. R. (2019). Soil health assessment: Past accomplishments, current

activities, and future opportunities. Soil and Tillage Research, 195,

104365. https://doi.org/10.1016/j.still.2019.104365

Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Har-

ris, R. F., & Schuman, G. E. (1997). Soil quality: A concept,

definition, and framework for evaluation. Soil Science Society
of America Journal, 61, 4–10. https://doi.org/10.2136/sssaj1997.

03615995006100010001x

Lal, R. (2016). Soil health and carbon management. Food and Energy
Security, 5, 212–222. https://doi.org/10.1002/fes3.96

Lopes, A. A. C., Sousa, D. M. G., Chaer, G. M., Reis Junior, F. B., Goed-

ert W. J., & Mendes, I. C. (2013). Microbial soil indicators as a func-

tion of crop yield and organic carbon. Soil Science Society of America
Journal, 77, 461–472. https://doi.org/10.2136/sssaj2012.0191

Lumly, T. (2020). leaps: Regression Subset Selection. R package version

3.1. https://cran.r-project.org/web/packages/leaps/leaps.pdf

Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate car-

bon sequestration in agricultural soils? A meta-analysis of paired

experiments. Agriculture Ecosystem and Environment, 139, 224–231.

https://doi.org/10.1016/j.agee.2010.08.006

Mbuthia, L. W., Acosta-Martínez, V., DeBruyn, J., Schaeffer, S., Tyler,

D., Odoi, E., Mpheshea, M., Walker, F., & Eash N. (2015). Long term

tillage, cover crop, and fertilization effects on microbial community

structure, activity: Implications for soil quality. Soil Biology and Bio-
chemistry, 89, 24–34. https://doi.org/10.1016/j.soilbio.2015.06.016

McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricul-

tural crop diversity enhance soil microbial biomass and organic matter

dynamics? A meta-analysis. Ecological Applications, 24, 560–570.

https://doi.org/10.1890/13-0616.1

Moebius-Clune, B. N., Moebius-Clune, D. J., Gugino, B. K., Idowu,

O. J., Schindelbeck, R. R., Ristow, A. J., van Es, H. M., This, J. E.,

Shayler, H. A., McBride, M. B., Kurtz, K. S. M., Wolfe, D. W., &

Abawi, G. S. (2016). Comprehensive assessment of soil health (3rd

ed.). bit.ly/SoilHealthTrainingManual

Nunes, M. R., Karlen, D. L., & Moorman, T. B. (2020). Tillage intensity

effects on soil structure indicators–A US meta-analysis. Sustainabil-
ity, 12, 1–17. https://doi.org/10.3390/su12052071

Nunes, M. R., Karlen, D. L., Moorman, T. B., & Cambardella, C. A.

(2020). How does tillage intensity affect chemical soil health indica-

tors? A United States meta-analysis. Agrosystems, Geosciences and
Environment, 3, e20083. https://doi.org/10.1002/agg2.20083

Nunes, M. R., Karlen, D. L., Veum, K. L., Moorman, T. B., & Cam-

bardella, C. A. (2020). Biological soil health indicators respond

to tillage intensity: A US meta-analysis. Geoderma, 369, 114335.

https://doi.org/10.1016/j.geoderma.2020.114335

Nunes, M. R., Karlen, D. L., Veum, K. L., & Moorman, T. B. (2020).

A SMAF assessment of U.S. tillage and crop management strate-

gies. Environmental and Sustainability Indicators, 369, 100072.

https://doi.org/10.1016/j.indic.2020.100072

Nunes, M. R., Karlen, D. L., Denardin, J. E., & Cambardella, C. A.

(2019). Corn root and soil health indicator response to no-till pro-

duction practices. Agriculture, Ecosystems and Environment, 285,

106607. https://doi.org/10.1016/j.agee.2019.106607

Nunes, M. R., van Es, H. M., Schindelbeck, R. R., Ristow, A. J., &

Ryan, M. (2018). No-till and cropping system diversification improve

soil health and crop yield. Geoderma, 328, 30–43. https://doi.org/10.

1016/j.geoderma.2018.04.031

Pareek, A., Dhankher, O. P., & Foyer, C. H. (2020). Mitigating the impact

of climate change on plant productivity and ecosystem sustainabil-

ity. Journal of Experimental Botany, 71, 451–456. https://doi.org/10.

1093/jxb/erz518

Post, W. M., Izaurralde, R. C., Jastrow, J. D., McCarl, B. A., Amonette, J.

E., Bailey, V. L., & Zhou, J. (2004). Enhancement of carbon seques-

tration in US soils. Bioscience, 54, 895–908. https://doi.org/10.1641/

0006-3568(2004)0540895:EOCSIU2.0.CO;2

Quisenberry, V. L., Smith, B. R., Phillips, R. E., Scott, H. D., & Nort-

cliff, S. (1993). A soil classification system for describing water and

chemical transport. Soil Science, 156, 306–315.

R Core Team (2020). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. https://www.gbif.org/

tool/81287/r-a-language-and-environment-for-statistical-computing

https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1016/j.geoderma.2015.11.023
https://doi.org/10.1016/j.geoderma.2015.11.023
https://doi.org/10.1016/S0167-8809(01)00246-8
https://doi.org/10.2136/sssaj2016.09.0286
https://doi.org/10.1016/bs.agron.2019.01.001
https://doi.org/10.1186/s13750-017-0108-9
https://doi.org/10.1186/s13750-017-0108-9
https://doi.org/10.1017/S1742170509990068
https://doi.org/10.1890/1051-0761(2000)0100423:TVDOSO2.0.CO;2
https://doi.org/10.1890/1051-0761(2000)0100423:TVDOSO2.0.CO;2
https://doi.org/10.1016/j.still.2019.104365
https://doi.org/10.2136/sssaj1997.03615995006100010001x
https://doi.org/10.2136/sssaj1997.03615995006100010001x
https://doi.org/10.1002/fes3.96
https://doi.org/10.2136/sssaj2012.0191
https://cran.r-project.org/web/packages/leaps/leaps.pdf
https://doi.org/10.1016/j.agee.2010.08.006
https://doi.org/10.1016/j.soilbio.2015.06.016
https://doi.org/10.1890/13-0616.1
http://bit.ly/SoilHealthTrainingManual
https://doi.org/10.3390/su12052071
https://doi.org/10.1002/agg2.20083
https://doi.org/10.1016/j.geoderma.2020.114335
https://doi.org/10.1016/j.indic.2020.100072
https://doi.org/10.1016/j.agee.2019.106607
https://doi.org/10.1016/j.geoderma.2018.04.031
https://doi.org/10.1016/j.geoderma.2018.04.031
https://doi.org/10.1093/jxb/erz518
https://doi.org/10.1093/jxb/erz518
https://doi.org/10.1641/0006-3568(2004)0540895:EOCSIU2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)0540895:EOCSIU2.0.CO;2
https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing


NUNES ET AL. 1213

Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T., & Eshel, G. (2019).

Soil health assessment: A critical review of current methodologies

and a proposed new approach. Science of The Total Environment, 648,

1484–1491. https://doi.org/10.1016/j.scitotenv.2018.08.259

Ritz, K., Black, H. I., Campbell, C. D., Harris, J. A., & Wood, C. (2009).

Selecting biological indicators for monitoring soils: A framework for

balancing scientific and technical opinion to assist policy develop-

ment. Ecological Indicators, 9, 1212–1221. https://doi.org/10.1016/j.

ecolind.2009.02.009

Simpson, R. D. (2016). Putting a price on ecosystem services.

Issues in Science and Technology, 32(4). https://issues.org/

putting-a-price-on-ecosystem-services/

Soil Survey Staff (1999). Soil taxonomy: A basic system of soil classi-
fication for making and interpreting soil surveys (2nd ed.). Agricul-

ture Handbook No. 436, USDA–NRCS. https://www.nrcs.usda.gov/

Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf

Soil Survey Staff (2014). Kellogg soil survey laboratory meth-

ods manual. Soil Survey Investigations Report No. 42, USDA–

NRCS. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/

stelprdb1253871.pdf

Soil Survey Staff, NRCS, USDA. Soil Survey Geographic (SSURGO)
Database. https://sdmdataaccess.sc.egov.usda.gov

Stott, D. E., Karlen, D. L., Cambardella, C. A., & Harmel, R. D. (2013). A

soil quality and metabolic activity assessment after fifty-seven years

of agricultural management. Soil Science Society of America Journal,
77, 903–913. https://doi.org/10.2136/sssaj2012.0355

Stott, D. E. (2019). Recommended soil health indicators and associ-
ated laboratory procedures. Soil Health Technical Note No. 450-03.

USDA–NRCS.

Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., &

McDaniel, M. D. (2015). Crop rotational diversity enhances below-

ground communities and functions in an agroecosystem. Ecology Let-
ters, 18, 761–771. https://doi.org/10.1111/ele.12453

Trumbore, S. E. (1997). Potential responses of soil organic carbon to

global environmental change. Proceedings of the National Academy
of Sciences of the United States of America, 94(16), 8284–8291.

Veum, K. S., Kremer, R. J., Sudduth, K. A., Kitchen, N. R., Lerch, R.

N., Baffaut, C., Stott, D. E., Karlen, D. L., & Sadler, E. J. (2015).

Conservation effects on soil quality indicators in the Missouri Salt

River Basin. Journal of Soil and Water Conservation, 70, 232–246.

https://doi.org/10.2489/jswc.70.4.232

Wander, M. M., Cihacek, L. J., Coyne, M., Drijber, R. A., Grossman,

J. M., Gutknecht, J. L. M., Horwath, W. R., Jagadamma, S., Olk, D.

C., Ruark, M., Snapp, S. S., Tiemann, L. K., Weil, R., & Turco, R. F.

(2019). Developments in agricultural soil quality and health: Reflec-

tions by the research committee on soil organic matter management.

Frontiers in Environmental Science, 7(109). https://doi.org/10.3389/

fenvs.2019.00109

Xiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G.,

& Comerford, N. B. (2014). Interaction effects of climate and land

use/land cover change on soil organic carbon sequestration. Science
of the Total Environment, 493, 974–982. https://doi.org/10.1016/j.

scitotenv.2014.06.088

Zobeck, T. M., Steiner, J. L., Stott, D. E., Duke, S. E., Starks, P. J.,

Moriasi, D. N., & Karlen, D. L. (2015). Soil quality index com-

parisons using Fort Cobb, Oklahoma, watershed-scale land manage-

ment data. Soil Science Society of America Journal, 79, 224–238.

https://doi.org/10.2136/sssaj2014.06.0257

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Nunes MR, Veum KS,

Parker PA, et al. The soil health assessment protocol

and evaluation applied to soil organic C. Soil Sci Soc
Am J. 2021;85:1196–1213.

https://doi.org/10.1002/saj2.20244

https://doi.org/10.1016/j.scitotenv.2018.08.259
https://doi.org/10.1016/j.ecolind.2009.02.009
https://doi.org/10.1016/j.ecolind.2009.02.009
https://issues.org/putting-a-price-on-ecosystem-services/
https://issues.org/putting-a-price-on-ecosystem-services/
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253871.pdf
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253871.pdf
https://sdmdataaccess.sc.egov.usda.gov
https://doi.org/10.2136/sssaj2012.0355
https://doi.org/10.1111/ele.12453
https://doi.org/10.2489/jswc.70.4.232
https://doi.org/10.3389/fenvs.2019.00109
https://doi.org/10.3389/fenvs.2019.00109
https://doi.org/10.1016/j.scitotenv.2014.06.088
https://doi.org/10.1016/j.scitotenv.2014.06.088
https://doi.org/10.2136/sssaj2014.06.0257
https://doi.org/10.1002/saj2.20244

	The soil health assessment protocol and evaluation applied to soil organic carbon
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Dataset
	2.1.1 | Published data
	2.1.2 | Comprehensive Assessment of Soil Health data
	2.1.3 | Natural Resources Conservation Service data
	2.1.4 | Combined SOC dataset

	2.2 | Inherent soil and climate variables
	2.3 | Data analyses
	2.3.1 | Evaluation of edaphic and climate variables


	3 | RESULTS AND DISCUSSION
	3.1 | Response of SOC to SMAF climate and soil suborder classes
	3.2 | Final edaphic and climate variables
	3.3 | Bayesian regression model
	3.4 | Final SOC scoring curves
	3.5 | Sensitivity to management (case studies)

	4 | CONCLUSION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


