chapter two

Soil erosion and soybean production

Glover B. Triplett and Seth M. Dabney

Contents

Introduction	19
Costs of erosion	21
How erosion occurs	24
Predicting soil erosion by water	24
USLE and RUSLE	
Rainfall	25
Soil erodibility	25
Slope length and steepness	
Cropping methods	
Practices	28
Applying the USLE	29
Crop management and erosion	29
Tillage	30
Crop rotation	
Cover crops	33
Wind erosion	
Erosion and economics	34
Pesticide and nutrient movement	34
Interpretive summary	37
References	

Introduction

Ecosion is a natural process. Geologic forces constantly uplift land from the sea and when the happens erosion begins. Rocks and other parent material weather and disintegrate to be a nutrients and to form soil. This soil supports vegetation which covers the land sufface. Vegetation slows but does not stop the erosion process. Under these conditions, an equilibrium is established between soil loss and soil formation. This stabilizes the soil

Soybean Production in the Midsouth

 Table 2.3
 A Comparison of C Factors for USLE Equation for Various Soybean Production

 Systems in Mississippi

		C-Values
- 1	. Continuous soybeans, no-till, Rdl (4000+ lb.), WC	0.040
2	. Continuous soybeans, no-till, Rdl (<4000 lb.), WC	0.050
	Soybeans no-till, doublecropped with small grain or ryegrass, Rdl (4000+ lb.)	0.060
4	. Soybeans no-till, doublecropped with small grain or ryegrass Rdl (<4000 lb.)	0.070
5	Soybeans stubble planted, WC, Rdl (3000+ lb.), maximum 2 cultivations	0.100
e	Soybeans stubble planted, WC, Rdl (<3000 lb.), maximum 2 cultivations	0.130
7	. Soybeans broadcast or drilled, no fall plowing, Rdl, WC, seeded preparation	0.140
	Soybeans broadcast or drilled, no fall plowing, Rdl, WC, seeded preparation, April 15	0.150
	Soybeans conventional planted, Rdl (3000+ lb.), no fall plowing, WC, seeded preparation, April 15, <i>maximum</i> 2 cultivations	0.180
10	Soybeans conventional planted, Rdl (<3000 lb.), no fall plowing, WC, seeded preparation, April 15, <i>maximum</i> 2 cultivations	0.200
11	. Soybeans conventional planted, Rdl (<3000 lb.), WC, no fall plowing, seeded preparation, April 1, <i>maximum</i> 2 cultivations	0.220
12	Soybeans conventional planted, Rdl (<1500 lb.), WC, no fall plowing, seeded preparation, April 15, <i>maximum</i> 2 cultivations	0.280
13	Soybeans conventional planted, Rdl (<1500 lb.), WC, no fall plowing, seeded preparation, April 1, <i>maximum</i> 2 cultivations	0.320
14	Soybeans conventional planted, no fall plowing, Rdl (<1500 lb.), WC, seedbed preparation, March 15, maximum 2 cultivations	0.380
15	Soybeans conventional planted, no fall plowing, Rdl (<1500 lb.), WC, seedbed preparation, March 1, maximum 2 cultivations	0.420

WC = volunteer winter cover; RdI = residue left. From NCRS.

Table 2.4 C Factors and Annual Soil Loss f	m Brown Loam Soil Region Plots with 5% Slope
--	--

	Conv	ventional-till		No-till		
	Soil loss,		Soil loss, Soil loss,		Soil loss,	
Crop	C factor	ton/acre/year	C factor	ton/acre/year	Ref.	
Sorghum	0.04	4.2	0.005	0.6	McGregor and Mutchler (1992)	
Corn (grain)	0.09	7.2	0.005	0.4	McGregor and Mutchler (1983)	
Corn (silage)	0.14	11.2	0.003	0.3	McGregor and Mutchler (1983)	
Soybean	0.12	21.1	0.006	1.2	McGregor (1978)	
Soybean	0.10	19.6	0.008	1.4	Mutchler and Greer (1984)	
Cotton/vetcha,b	0.13	9.6	0.010	0.8	Mutchler and McDowell (1990)	
Cotton ^b	0.31	31.2	0.053	5.4	Mutchler et al., (1985)	

* With hairy vetch winter cover crop.

^b Average of two treatments with differing previous soil management histories.

Practices

Practices, *P*, represent another means to manage soil to reduce erosion loss. These include such techniques as terraces, farming on the contour, buffer strips, and grass hedges (Meyer and Mannering, 1967, Mutchler et al., 1994). Strips of close-growing crops or grass hedges slow water movement and greatly resist erosion because of the closely spaced stems, causing larger soil particles to be deposited the same way as behind terrace impoundments

Chapter two: Soil ere

(Dabney et al., 1993a as important means practices, indicating

Applying the l In calculating the era are multiplied. For silt loam and want March 15 and cultimade to plant on t (A = RKLSCP) are

> R = 350 K = 0.43 LS = 0.70 C = 0.38P = 1.0

In solving the equ

or A = 40 tons/ac If the produce

A

which is still too If the produc plant on the cont

which is slightly If another fir the LS factor be

or 8.6, which is ; for fields with :

Crop manager

Complete elimi undisturbed ar be to a level th over a long pethe soil in que However, long management j reduces the fle exposed soil a