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ABSTRACT Wild pig (Sus scrofa) population expansion and associated damage to crops, wildlife, and the
environment is a growing concern in the United States. The destructive rooting behavior of wild pigs
indicates where they have foraged and their general presence on the landscape. We used aerial imagery with a
small unmanned aerial system to assess damage of corn (Zea mays) fields by wild pigs in the Mississippi
Alluvial Valley of Mississippi, USA, during the 2016 growing season. Images were automatically classified
using segmentation-based fractal texture analysis and support vector machines. We assessed the accuracy of
automated classification with 5,400 Global Positioning System ground reference points collected in the
fields. Classification accuracies for identification of damaged and nondamaged areas were between 65% and
78%. In general, automated classification underestimated the area of damage present within fields. Kappa
values ranged from 0.26 to 0.51, on a scale of 0.0–1.0. Small unmanned aerial systems overcome limitations of
existing methods because they can survey an entire field rapidly and without significant field labor. � 2018
The Wildlife Society.

KEY WORDS corn, damage assessment, human–wildlife conflict, Mississippi, small unmanned aerial systems, Sus
scrofa, wild pigs, Zea mays.

Wild pigs (Sus scrofa) were introduced to North America in
the 1500s. Natural dispersal, colonization, and illegal
translocation have caused populations to expand significantly
throughout the southeastern United States and other areas in
North America (Gipson et al. 1998). Wild pigs are
considered a significant ecological threat that far surpasses
damages posed by other invasive vertebrates; accordingly,
wild pigs are listed as one of the greatest concerns by wildlife
managers and biologists (Ditchkoff and West 2007).
Negative effects of wild pigs are numerous and detailed in
review articles (Barrios-Garc�ıa and Ballari 2012, Bevins et al.
2014), but one economic consequence that results in human–
wildlife conflict is damage to agricultural lands (Schley et al.
2008, Barrios-Garc�ıa and Ballari 2012). In Mississippi,
USA, like other regions where corn (Zea mays) is grown, wild
pigs are a nuisance, causing damage to plants from seeding
through maturity (Mackin 1970, Herrero et al. 2006, Schley
et al. 2008).

Previous studies to determine economic loss due to wild pigs
relied on scientific measures such as self-reporting question-
naires to approximatedamage costs and radiotelemetry to track
wild pigmovement andmeasure habitat selection (Hayes et al.
2009; Hartley et al. 2012, 2015; Anderson et al. 2016).
Althoughsound, these approachespossess inherentbiases such
as samplingerror and lackof visual investigation.Such research
gaps prompted an appeal in the literature for more precise and
efficient methodology for determining the true extent of wild
pig damage (Felix et al. 2014, Engeman et al. 2016). Current
estimates of wild pig damage are mixed. Pimental (2007)
estimated an annual combined cost of US$1.5 billion for
damage and control. However, this value assumed a nation-
wide total of 5 million wild pigs. Seven years later, Mayer
(2014) estimated there were approximately 6.3 million wild
pigs in the United States. At a cost of US$300/wild pig, this
couldmean the cost of control and damage is now closer toUS
$1.9 billion annually (Pimental 2007).
Beyond merely detecting damage, it is more informative to

determine the extent of damage in areas frequently selected
by wild pigs. Two common geospatial techniques include
quadrats and line-intercept sampling, although exact
methods of precisely measuring damage are also utilized
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(Engeman et al. 2016). These methods require potentially
high levels of field-data collection effort; therefore, Engeman
et al. (2016) suggested remote sensing methods were more
desirable. Remotely sensed images require a certain amount
of ground verification to train pattern recognition software in
an effort to automate detection of wild pig damage.
However, once accurate algorithms are built, automating
damage assessment through pattern recognition techniques
will reduce time and effort needed for assessment of wild pig
damage (Engeman et al. 2016). Remote sensing methods
also address the need for temporal evaluation because less
effort to collect data can allow for more frequent collection
(Felix et al. 2014). These methods overcome obvious
challenges in assessing interior damage to mature corn
because of the obscured view (Mackin 1970). Finally, remote
sensing offers the capability to capture landscape information
from surrounding areas, which can assign more meaningful
context to damage assessments (Felix et al. 2014).
Engeman et al. (2016) suggested pattern recognition as a

useful technique for identifying wild pig rooting damage.
Texture, a component of pattern recognition analysis,
enables discrimination between classes of interest and
removes the need to purchase a more costly multispectral
sensor. Particularly with land-cover classification problems,
texture within an image can compensate for the lack of
spectral bands. A standard practice is to use Gabor filters and
gray-level co-occurrence matrix (Marceau et al. 1990, Dunn
and Higgins 1995). These methods are effective texture-
extraction methods for land cover applications using imagery
with low spatial resolution (Samiappan et al. 2017). For
high-resolution imagery, such as is generally collected by
small unmanned aerial systems (UAS), these methods
require significant computational resources, making them
less efficient. Samiappan et al. (2017) demonstrated that
texture extraction using segmentation-based fractal texture
analysis (SFTA; Costa et al. 2012) can achieve similar results
with less computation. Our objective was to assess the ability
of a small UAS to estimate damage caused by wild pigs in
production corn fields. Specific goals of this study were to
apply SFTA to UAS-collected imagery to 1) reliably
automate detection of wild pig damage and 2) accurately
estimate the area of damage from classification maps using
threshold and histogram analysis.

STUDY AREA

The study area was located in theMississippi Alluvial Valley,
an area in northwestern Mississippi between Mississippi and
Yazoo rivers (Fig. 1). We chose 5 production corn fields in
Bolivar, Leflore, and Sunflower counties ranging in size from
4.57 ha to 36.67 ha.We selected fields with mild (<0.5 ha) to
substantial (�0.5 ha) levels of pig damage, verified by visual
inspection.

METHODS

Data Collection
We conducted UAS operations with a Lancaster V4
(Precision Hawk, Raleigh, NC, USA) fixed-wing aircraft.

The aircraft carried a 14.2-megapixel, 1S2 point-and-shoot
digital camera (Nikon USA, Melville, NY, USA) to collect
visible (i.e., RGB) imagery in 3 bands. Bands were centered
at approximately 450 (blue), 550 (green), and 650 (red) nm.
We conducted flights on 29 June and 5 August, 2016, at
120-m altitude, resulting in a ground-sampling distance of
1 cm/image pixel. Flight lines resulted in imagery with 70%
side and in-track overlap between successive images.
Individual overlapping images were stitched together (i.e.,
mosaicked) to create a larger, continuous image using image
processing software (AgiSoft, LLC, St. Petersburg, Russia).
We dispatched a field crew on 30 June and 9 August, 2016,

corresponding with the aforementioned flights to provide
ground-truth data that could be used to validate image
analysis. At the time of the first collection, corn was between
R1 (silking) and R4 (dough) growth stages, when the corn
kernel was still tender and full of sugars. The second
sampling trip occurred once the corn reached full maturity
and the kernel had completely hardened. A substantial
portion of the damage occurred immediately after planting,
when wild pigs rooted up freshly planted corn seed. This type
of damage caused weeds to grow in areas where the corn seed
was depredated, leaving an easily noticed identifiable pattern.
Wild pig damage on mature corn consisted of numerous
trampled stalks, which the field crew also identified. The
field crew documented areas of damage with field notes and
photographs. Additionally, the field crew recorded locations
of damaged patches with a Geo 7X Global Positioning
System (GPS) unit (Trimble, Sunnyvale, CA, USA), capable
of centimeter-level accuracy with virtual reference station
connectivity, or when postcorrected (Fig. 2). The field crew
collected GPS coordinates for 5,400 points of damage to
measure the extent of wild pig–damaged areas in each field
for accuracy assessment with UAS-collected imagery.

Image Classification
Healthy, uniform crop structure exhibits a unique texture
pattern when compared with the regions with damaged or
missing plants. Visual inspection of the imagery revealed
unique texture characteristics between healthy and damaged
regions. Textural differences in appearance were mainly
differences in roughness, granulation, and regularity. We
computed the SFTA on a subimage of size k� k pixels that
produced a feature vector that uniquely represented regions
such that feature vectors extracted from dissimilar regions
were distinguishable from each other, while similar regions
were indistinguishable. We can distinguish healthy regions
with the SFTA feature vector because they exhibit a different
pattern distinguishable from damaged regions (Fig. 3).
Support Vector Machine (SVM; Burges 1998) classifiers

have previously been effective for classifying land cover types
in remotely sensed imagery (Mountrakis et al. 2011). Initial
testing with UAS imagery showed SVM classifiers produced
superior results to alternatives (e.g., na€ıve Bayes and
maximum likelihood classifiers). The supervised pattern-
classification process consisted of 2 phases—training and
testing. In the training phase, we presented SFTA vectors for
ground-verified examples of healthy regions and damaged
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regions so the SVM classifier could learn the patterns and
build a mathematical model that characterized training
examples. The training subimages for both healthy (H) and
damaged (D) classes were randomly selected from both
healthy and damaged regions (as determined from ground
reference information, photographs, and field notes) found
in the UAS images. This ensured a representative sample
from both classes, distributed across the study site. From
each of the 5 study fields, we used <1% of the pixels for
training the supervised classifier (�25,000 samples from each
class). The selection of training samples and accuracy
assessment of the classification process were aided by the
ground reference information. We presented new imagery to
the SVM classifier so the SVM could identify healthy and
damaged regions automatically in the testing phase. The
SFTA texture features were linearly scaled to a range of
�1.0–1.0 to normalize the difference between the numerical
values of the features. We used a grid search algorithm to
calculate the optimal SVM classifier parameters (PenaltyC
and Gamma g; Chang and Lin 2011). We used open-source
Library for Support Vector Machines (LibSVM) library to
train and test the SVM classifier (Chang and Lin 2011).

Finally, we used MATLAB (Mathworks, Natick, MA,
USA) with LibSVM toolbox to perform the classification.

Accuracy Assessment
We loaded the classification map, image mosaic, and GPS
coordinates of the ground reference information into
ArcGIS (v. 10.3; ESRI, Redlands, CA, USA) and calculated
accuracy estimates after the classification process. We
determined performance of the classification algorithm
with respect to 1) Kappa accuracy (k), 2) overall accuracy,
3) commission error, 4) omission error, and 5) confidence
intervals. These parameters provide a good understanding of
the efficacy of the SVM classifier. The Kappa (k) statistic is a
discrete multivariate technique frequently used in remote
sensing to measure agreement between �2 classifiers (Viera
and Garrett 2005). We used a confusion matrix to interpret
the classification accuracy (Stehman 1997). Overall accuracy
is the sum of the diagonal elements divided by the total sum
of the matrix. The overall accuracy is the percentage of
samples that were correctly classified. The commission error,
estimated from nondiagonal elements of a confusion matrix,
represents samples that belong to H class but were classified

Figure 1. Area of study shown in relation to the state of Mississippi, and the United States of America.
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as belonging to theD class. The omission error represents the
samples that belong to D class but were classified as H class.
The 95% confidence interval reported with k provides a
range of positive and negative values that act as good
estimates of the unknown population parameter.

RESULTS

Overall classification accuracies for pig damage were between
65% and 78% (Table 1). Errors of omission were more
common than errors of commission, meaning that when the
classifier was incorrect, it was more likely to label damaged
areas as healthy, rather than labeling healthy areas as

damaged. Kappa values ranged from 0.26 to 0.51, with 0.40
being a benchmark for moderate agreement for this type of
analysis (Viera and Garrett 2005). This means a reasonably
accurate assessment of damage was produced; however,
damage extent was likely underestimated (Table 2).
The processing time for the analysis was approximately

15min/km2 of land imaged, on a moderately robust
computing system. As a result of computational efficiency,
it is likely that computational speed would not be
dramatically slower for a computer of lesser power; it is
not certain if a more powerful computer would produce a
result in less time. Thus, it is likely that future users will not
be challenged to find computing systems capable of the same
analysis.

DISCUSSION

Segmentation-based fractal texture analysis of UAS-col-
lected imagery automated detection, but underestimated area
estimates of wild pig damage. The majority of underestima-
tion error was the result of classification error. Classification
error resulted from both data collection and data processing.
Roll, pitch, and yaw of the aircraft during image collection
introduces error that must be taken into account during
mosaic creation. Without consideration for this distortion,
results similar to Engeman et al. (2016) are likely (i.e.,
underestimation of damaged area due to off-nadir views).
Some error was also due to discrepancy between the accuracy
of the GPS used to collect ground-reference data and
mosaicked UAS images. Discrepancy in accuracy can mean
that placement of the reference GPS point was slightly off

Figure 2. Aerial images of production corn fields collected with unmanned aerial systems on 29 June and 5 August 2016, shown with locations of Global
Positioning System coordinates collected on 30 June and 9 August 2016, for ground-truth assessment (red dots) of damage from wild pigs inMississippi, USA.
Letters correspond to fields as referenced in Tables 1 and 2.

Figure 3. Subimages taken from unmanned aerial systems imagery of
production corn fields showing differences in texture of healthy, uniform
crop (A) and crop damaged by wild pigs (B) in Mississippi, USA, during
2016. Segmentation-based fractal analysis was used to create feature vectors
for both classes (C) and differentiate between the 2 classes within the
imagery.
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from the actual location within the image when ground-
reference data andmosaicked UAS images were combined. If
the GPS ground-truth damage point appears just outside of
an area classified as damage on the image, the accuracy
assessment would classify this as an error of omission, when
in reality it is an alignment issue between the GPS points and
the image. Although other studies (e.g., Felix et al. 2014)
have utilized high-precision GPS to conduct survey of pig
damage, these data were not combined with high-resolution
aerial imagery in this manner.
Image mosaicking relies on finding tie points (i.e., the same

object appearing in both images) in overlapping images.
These tie points, along with automated geotagging of images
by the UAS during collection, facilitated stitching of
snapshots into a continuous image by the mosaicking
software. More tie points lead to more coherent and uniform
stitching. In production corn fields, finding good tie points
can be challenging because there are limited unique features
within the image that serve as tie points. As a result,
mosaicking artifacts in the imagery can be a major source of
error for identifying and estimating the damages caused by
wild pigs (Fig. 4). These errors can (but do not always) lead to
errors of commission or omission because they create error in
the imagery. Decreasing presence of mosaicking artifacts will
improve classification accuracy; however, this process can be
tedious andmore of an art than a science.Marking of fields to
create unique features that serve as tie points (e.g., poles, field
flags) and decreasing the distance between flight lines can
proactively reduce image mosaicking artifacts in the data
collection phase. The availability of a near infrared band
might also increase the classification accuracy by increasing
the potential to discriminate between soil and crop; however,
this would require a multispectral sensor rather than the
visible sensor used in this study.

There is clear room for improvement in use of UAS for
automated detection of wild pig damage; however, these
results show promise for future endeavors and more accurate
economic estimation of wild pig damage. This approach
provides an objective technique to quantify damage and
removes potential bias from self-reporting landowners or
human observers. Furthermore, UAS-collected imagery
samples the entire field of interest, rather than subsampling
along transects. The methodology used in this study also

Table 1. Accuracy assessment of classified unmanned aerial systems imagery was conducted with a confusion matrix listing the percentages of areas classified as
healthy (H) and damaged (D) within each study site. The matrix also generated percentages of errors of omission (OE) and commission (CE), an overall
accuracy (OA), and a kappa (k) statistic confidence interval (CI). The confusion matrix evaluated the accuracy of the structured vector machine classifier with
regard to its ability to automate detection of wild pig damage in production corn fields in Bolivar, Leflore, and Sunflower counties,Mississippi, USA, during the
2016 growing season.

Class Field A Field B Field C Field D Field E

H (%) 40.8 61.4 71.4 64.4 61.1
D (%) 83.7 88.2 75.0 67.9 78.9
OE (%) 40.8 38.5 28.5 35.5 38.8
CE (%) 16.2 11.7 25.0 32.0 21.1
OA (%) 70.7 77.7 73.4 65.9 64.9
k (with CI) 0.26 (�0.01) 0.51 (�0.01) 0.46 (�0.01) 0.31 (�0.01) 0.27 (�0.01)

Table 2. Estimated area of study corn fields damaged by wild pigs in
Bolivar, Leflore, and Sunflower counties, Mississippi, USA, during the 2016
growing season. Damage estimates were approximated from automated
classification of unmanned aerial systems imagery.

Field Damaged areas (ha) Total area (ha)

A 0.34 36.67
B 0.13 4.57
C 0.54 15.82
D 0.39 16.67
E 2.10 36.50

Figure 4. Mosaicking artifacts in aerial imagery collected with unmanned
aerial systems over production corn fields in Mississippi, USA, during 2016
that lead to classification errors during automated classification of wild pig
damage. Multiple errors appear including missing data (A), image quality
mismatch (B), tie-pointmismatch (C), and image orientationmismatch (D).
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addresses research gaps identified in literature, including use
of pattern recognition and precision (Felix et al. 2014,
Engeman et al. 2016).
A small UAS is an efficient alternative to conducting wild

pig damage surveys when compared with the time needed to
do extensive in-field or landowner surveys, or per unit costs
of telemetry collars (Tzilkowski et al. 2002, Felix et al. 2014).
Easy-to-pilot, off-the-shelf systems can be obtained for�US
$500. Mosaicking can be done by any of a handful of cloud-
based processing services that charge varying fees per land
unit, per flight, or on a monthly basis; some are as low as $30/
month. As legal hurdles for use of UAS are lowered, this tool
will become more accessible to researchers and landowners.
Additionally, small UAS can be used to create temporal data
sets to more effectively monitor the size and age of damaged
areas.
The expansion of wild pigs throughout North America

makes cost-effective, reliable techniques for discovery and
measurement of pig-related damage a necessity. Using an
inexpensive and widely available tool, we detected wild pig
damage through an automated image processing methodol-
ogy, which will enable wildlife biologists and agricultural
producers to estimate damage for greater areas than
previously possible. Wildlife biologists charged with reduc-
tion of human–wildlife interactions can use the process
described herein to determine where wild pigs occur and
enact remediation techniques as quickly as possible.
Agricultural producers can use these technologies to
determine how much damage has occurred to make cost-
effective decisions regarding whether or not to take
remediative action. Lastly, these techniques will help
researchers more efficiently quantify pig damage by reducing
labor costs for ground-based technician support. In
summary, small UAS represent a new option for damage
assessment and are becoming more viable as legal hurdles are
reduced, costs come down, and scientists find more
applications for their use.
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