
Science of the Total Environment 830 (2022) 154764

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Deteriorating weed control and variable weather portends greater soybean
yield losses in the future
Christopher A. Landau a,⁎, Aaron G. Hager b, Martin M. Williams II c
a ORISE Postdoctoral Fellow, Global Change and Photosynthesis Research Unit, USDA-ARS, 1102 S Goodwin Ave, Urbana, IL 61801, United States of America
b Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL 61801, United States of America
c Global Change and Photosynthesis Research Unit, USDA-ARS, 1102 S Goodwin Ave, Urbana, IL 61801, United States of America
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Poor late-seasonweed control is the major
driver of soybean yield loss.

• Later maturing cultivars alleviate some of
the yield loss from late-season weeds.

• Drought or heat stress exacerbates yield
loss from late-season weeds.

• Drought and heat stress are especially
damaging during reproductive growth.
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Since the 1950's much of the US soybean growing region has experienced rising temperatures, more variable rainfall,
and increased carbon emissions. These trends are predicted to continue throughout the 21st century. Variable weather
and weed interference influence crop performance; however, their combined effects on soybean yield are poorly un-
derstood. Using machine learning techniques on a database of herbicide trials spanning 28 years and 106 weather en-
vironments we modeled the most important relationships among weed control, weather variability, and crop
management on soybean yield loss. When late-season weeds were poorly controlled, average soybean yield losses of
48% were observed. Additionally, when weeds were not completely controlled, low rainfall and high temperatures
during seed fill exacerbated soybean yield loss due to weeds. Since much of the US soybean growing region is heading
towards drier, warmer conditions, coupled with growing herbicide resistance, future soybean yield loss will increase
without significant improvements in weed management systems.
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1. Introduction

The US produces over 31% of the global soybean (Glycine max (L.)
Merr) supply (USDA-FAS, 2021). Currently, soybean is grown on 30million
ha in the US with a farmgate value exceeding $31 billion (USDA-NASS,
2021). However, soybean production is impacted by variability in climate
B.V. This is an open access article u
factors such as CO2 levels, temperature, and rainfall. These climate factors
account for 20% and 15% of the variability in global and North American
soybean yield, respectively (Vogel et al., 2019).

Future climate changes are expected to further threaten the stability of
US soybean production (IPCC, 2019). Much of the US soybean growing re-
gion is expecting a 2.6 to 5.2 °C increase in average air temperature
(Hayhoe et al., 2018). Furthermore, an increase in the frequency of daily
high temperatures exceeding 35 °C is expected over the same period
(Seneviratne et al., 2012). Warming air temperatures will cause a gradual
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soybean yield increase up to a threshold temperature of 30 °C; however, for
every 1 °C increase in daily average temperature above 30 °C, yield losses of
16% can occur (Kucharik and Serbin, 2008; Lobell and Asner, 2003; Lobell
and Field, 2007; Schlenker and Roberts, 2009). Excessive temperatures are
especially damaging during soybean reproductive growth stages, leading to
flower or pod abortion and reduced seed fill (Egli and Wardlaw, 1980;
Puteh et al., 2013). A slight increase in spring rainfall, occurring mainly
from increased frequency of extreme rainfall events, is expected for much
of the US soybean growing region (Hayhoe et al., 2018; Romero-Lankao
et al., 2014). Higher frequency of extreme rainfall events can decrease the
number of field working days and delay planting and crop emergence
(Tomasek et al., 2017). Additionally, extreme rainfall events may lead to
flooding, which is deleterious to soybean within 48 h of planting (Urban
et al., 2015; Wuebker et al., 2001). Reduced summer rainfall and an
increase in drought frequency and severity are likely to accompany the
increased spring rainfall (Hayhoe et al., 2018; Jin et al., 2018). Damage
to soybean yields from drought stress will vary by both the timing and se-
verity of the drought, with flowering and seed fill being the most suscepti-
ble stages (Cui et al., 2019; De Souza et al., 1997; Heatherly, 1993; Siebers
et al., 2015; Wijewardana et al., 2018).

Average atmospheric CO2 concentrations are currently greater than
400 ppm and, undermost greenhouse gas emissions scenarios, are expected
to rise above 550 ppm by the end of the century (Hayhoe et al., 2018). In-
creased concentrations of CO2 improve yield in C3 plants such as soybean
via CO2 fertilization, which is thought to result from stimulation of photo-
synthesis, and reduction in stomatal conductance and transpiration
(Bernacchi et al., 2005; Drake et al., 1997; Jin et al., 2018; Leakey et al.,
2009). However, both excessive temperature and drought stress during re-
productive growth have been shown to reduce or eliminate the benefits of
CO2 fertilization (Jin et al., 2018, 2017; Thomey et al., 2019).

Even under ideal environmental conditions, soybean production is
threatened by interference from uncontrolled weeds. The potential for soy-
bean yield loss due to weeds in the US stands at $16.2 billion (Soltani et al.,
2017). Irreversible soybean yield loss due toweed interference can occur as
early as the first trifoliate stage (Green-Tracewicz et al., 2012; Van Acker
et al., 1993).Weeds negatively affect soybean production by disrupting har-
vest operations (Nave and Wax, 1971), altering seed protein content
(Gibson et al., 2008), and competing for limited resources such as light
and nutrients throughout the growing season (Burnside, 1973). Although
weeds and weather variability are concomitant stressors of soybean, little
is known about their combined effects on soybean production. A better un-
derstanding of how soybean responds to climate change and weed interfer-
ence can be useful in developing strategies tomitigate the impact of climate
in the future.

Themost commonmethod for controllingweeds in soybean is the use of
preemergence (PRE) and postemergence (POST) herbicides. In the US, 99%
of all soybean hectares were treated with at least one herbicide application
(USDA-NASS, 2021). Herbicide efficacy varies depending on the product,
application timing, soil characteristics, target weed species, and environ-
ment. Inadequate rainfall following PRE application increases the risk of
unsuccessful weed control of soil-residual herbicides (Landau et al.,
2021a). In contrast, excessive rainfall can leach certain PRE herbicides
out of the weed seedling emergence zone, thereby preventing lethal doses
from being absorbed by target weeds (Ziska, 2016). Warmer temperatures
(e.g. >30 °C) increase the growth rate of several weed species, thereby re-
ducing the window of time for effective application of many POST herbi-
cides (Guo and Al-Khatib, 2003; Patterson, 1995). Additionally, herbicide
uptake and metabolism by crop and weed species are positively correlated
with air temperature for several herbicides (Bailey, 2003; Johnson and
Young, 2002).

The growing prevalence of herbicide resistance is reducing the utility of
chemical weed control. Within the US, weed populations from at least 24
species have evolved resistance to herbicides across 10 of the 14 sites of ac-
tion labeled in soybean (Heap, 2021). More concerning is that seven of
these species have evolved multiple herbicide resistance (resistance to
two or more herbicides from different sites of action within the same
2

population) and are commonly found in soybean fields. Growers expect
new herbicides will alleviate the problems caused by herbicide resistance
(Schroeder et al., 2018); however, herbicide discovery has stagnated for de-
cades primarily due to the increased costs of bringing new herbicides to the
market and increased regulatory requirements (Sparks and Lorsbach,
2017). As such, non-chemical weed management tactics such as changing
crop management strategies to increase soybean's competitiveness with
weeds will need to be further explored to mitigate some of the impacts
from increasing resistance issues.

The major hindrance to adequately examining the linkages among
climate variability, weed control, and crop management as they relate to
soybean yield is often the relatively low number of environments
(e.g., generally less than six) to draw inferences from. As such, the true link-
agesmay not be adequately identified. This study utilizes machine learning
techniques on a dataset of 106 herbicide trials conducted in Illinois, the
largest soybean producing state in the US (USDA-NASS, 2021), to better
characterize the interactions among soybean production, climate change,
weed interference, and cropmanagement practices. A better understanding
of these interactions will assist soybean producers adapt to a changing
climate. The objective of this study was to identify the major linkages
among weather variability, weed control, and crop management on soy-
bean yield. We hypothesize that soybean yield loss due to weeds is primar-
ily driven by incomplete weed control paired with drought stress or heat
stress during the reproductive growth stages.

2. Materials and methods

2.1. Field trial description

The Herbicide Evaluation Program (HEP) at the University of Illinois
conducted >1500 herbicide evaluation trials in soybean between 1992
and 2019. Most trials were conducted in Urbana, IL (40°4′31″N/ 88°14′31
W), where the soil types were either a Flanagan silt loam (fine, smectitic,
mesic Aquic Argiudolls) or a Drummer silty clay loam (fine-silty, mixed,
mesic Typic Endoaquolls) with an average pH of 6.4 and 4.9% organicmat-
ter. Each trial consisted of herbicide, spray adjuvant, and weedy control
treatments. Treatments were arranged in a randomized complete block de-
sign with three replicates. Data varied by trial but often included percent
weed control (0% is no control, 100% is complete control) of dominant spe-
cies up tofive times during the growing season, percent soybean injury (0%
is no injury, 100% is crop death), and occasionally soybean yield. Soybean
cultivar, planting date, planting density, and previous crop were recorded.
Data from each trial were compiled into a single database (hereafter re-
ferred to as the HEP database) using FieldPro: Bio Data Management Soft-
ware (Heartland Technologies, INC., 12491 E. 136th St., Fishers Indiana).

2.2. Database management

The HEP database was initially filtered to contain only trials with both
weed control ratings and soybean yield. Trials not conducted in Urbana,
IL were removed due to low numbers of observations. One early-season
(21–42 days after planting) and one late-season (63–84 days after planting)
weed control rating were used for each treatment within each trial in order
to compare trials across similar time points. Season-long weed control was
calculated as the average of the early and late-season weed control ratings.

Many trials within the HEP contained notes on when the crop reached
the R5 growth stage (i.e. beginning seed) (Naeve, 2018). Unpublished soy-
bean cultivar trials in Urbana, IL were used to estimate the R5 date in trials
missing such data (pers. comm. E. Nafziger). Five consecutive 21-day inter-
vals were created for each trial, with the fourth interval (hereafter referred
to as seed fill) centered at the R5 date. Other intervals corresponded to the
following soybean growth stages; early-vegetative growth (interval 1), late-
vegetative growth (interval 2), flowering to pod development (interval 3),
and full maturity (interval 5). Average air temperature, total rainfall, and
potential evapotranspiration (PET) were added for each interval, and data
was provided by the Illinois State Climatologist's Office (a part of the Illinois
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State Water Survey located in Champaign and Peoria, Illinois, and on the
web at www.sws.uiuc.edu/atmos/statecli). Cumulative growing degree
days (GDDs) and total water balance were calculated and added for each in-
terval. Average vapor pressure deficit (VPD)was calculated for each 21-day
interval using the following equation (Monteith and Unsworth, 2008).

VPDint ¼ 0:611 ∗ exp
Tavg ∗ 17:3
Tavg þ 237:3

� �� �
∗ 1 −

RHavg

100

� �� �
(1)

where Tavg and RHavg are the average temperature and relative humidity
respectively over the 21-interval.

Large variation in season-long weather was observed across the 106
environments from 28 years of data. Average season-long precipitation
was 472 mm with a minimum of 295 mm in 2013 and a maximum of
914 mm in 1993 (Table 1). Average season-long PET ranged from
418 mm in 2009 to 765 mm in 2007 with an average PET of 639 mm.
Season-long GDD accumulation varied by year and planting date, ranging
from 1399 to 1929 GDD's. Average VPD over the 21-day interval ranged
from 0.21 and 1.40 kPa.

Within each trial, weed-free yield was added to each treatment and was
calculated as the average yield of each treatment within the trial with
≥95% control for all evaluated weed species. Trials that did not contain
any treatment with ≥95% were removed from the database. Following
the filtering and removal processes, the database contained 106 trials and
1092 observations. For each treatment within each trial, percent yield
loss was calculated using the following equation.

percent yield loss ¼ trial weedfree yield − individual treatment yield
trial weedfree yield

∗ 100 (2)

For each weed in the HEP database, competitive index (CI) values were
extracted from WeedSOFT Decision Support System (University of
Nebraska-Lincoln, P.O. Box 830915, Lincoln, NE). These CI values were de-
veloped using local or regional research as well as expert opinions (Neeser
et al., 2004). Values for CI are scaled and calculated relative to the most
competitive weed species with soybean using the following equation
(Coble and Mortensen, 1992):

CIi ¼ P ið Þ
P mð Þ ∗ 10 (3)

where CIi is the competitive index of weed i, P(i) is the percentage of soy-
bean yield loss caused by a low density of weed i, and P(m) is the percentage
Table 1
Summary statistics of season-long weed control, season-long total thermal time and
precipitation, and agronomic variables from soybean yield trials conducted in Ur-
bana, Illinois from 1992 to 2019. Explanation of abbreviations: CI-0 to CI-8, average
control of all weed species grouped by their respective competitive index (i.e. CI-0
includes all weeds with a competitive index of 0.0–0.9); GDD, growing degree
day; PET, potential evapotranspiration; VPD, average vapor pressure deficit for
the 21-day growth intervals; DOY, day of year.

Unit Mean Min Max

Season-long control
CI-0 % 91 0 99
CI-1 % 84 0 99
CI-2 % 83 0 99
CI-3 % 76 0 99
CI-8 % 75 0 99
All weed species % 80 0 99

Season-long total
Thermal time GDD 1668 1399 1929
Precipitation mm 472 295 914
PET mm 639 418 765
VPD kPa 0.73 0.21 1.40

Agronomic variables
Planting date DOY 142 118 180
Planting density plants ha−1 398,000 346,000 544,000

3

of soybean yield loss caused by low levels of the most competitive weed
species. Because the values are scaled, CIs range from 0.0 to 10.0 with 0.0
being the least, and 10.0 being the most competitive with soybean. The
CIs do not account for weed population density; as such, sufficient densities
of a low CI weed (e.g., 1.0) can be detrimental to the crop. Five of the sev-
enteen weed species in the database did not have a reported CI for soybean
in IL; therefore, CIs of related or comparable species were used. The weeds
in the HEP database were then grouped based on their competitive index
with each group spanning 1.0 CI. A list of the weed species observed in
this study, including their CI and CI group, is reported in Table 2.

Throughout the 28 years of soybean herbicide evaluation trials, percent
weed control varied greatly and was dependent on weed species. All CI
groups had a minimum and maximum recorded percent control of 0 and
99%, respectively (Table 1). The CI-0 group had the highest average
season-longweed control (mean=91%) andwasmainly composed of hen-
bit (Lamium amplexicaule L.) and common chickweed (Stelaria media (L.)
Vill.). The CI-8 group had the lowest mean season-long control (mean =
75%) and consisted of only common cocklebur (Xanthium strumarium L.).

Several soybean management practices were captured within the
database. Forty-five unique cultivars were used throughout the 28 years
of trials. These cultivars were planted between April 28 and June 29
(Table 1). Planting densities of these cultivars ranged from 346,000 to
544,000 plants ha−1 and was consistent with soybean planting densities
for Illinois between 1992 and 2019.

2.3. Statistical analysis

Classification and regression tree (CART) analysis was used in order to
visually model the relationship among weed control, weather, and soybean
management practices on both soybean yield and soybean yield loss due to
weeds. Random forest analysis was used to determine the importance of
each independent variable for predicting soybean yield and yield loss. Ran-
dom forest and CART provide advantages over other traditional statistical
methods. For example, as both techniques are nonparametric, there are
no underlying assumptions of the data distributions. Additionally, both
models can handle incomplete or missing data, as well as data from numer-
ous quantitative and qualitative variables.

The CART procedure was implemented using the rpart package in R
(Therneau and Atkinson, 2019). The CART model separates the dependent
variable into two groups (nodes) using continuous and categorical indepen-
dent variables as splitting points (Breiman et al., 1984). Threshold values
for each splitting point were selected by the model based on the data distri-
bution. The minimum number of observations required for the CART algo-
rithm to attempt to split the data was set to 50 and theminimum number of
observations required to be in any terminal leaf following a split was set to
15. Independent variables were selected by the model only if they
minimized the heterogeneity of the dependent variable. The final CART
model is displayed as an easily interpretable dichotomous tree. To obtain
the most parsimonious model, the dichotomous tree was pruned using the
“1-se” rule, which selects the simplest model within one standard error of
the model with the lowest error value.

The random forest analysis was implemented using the randomForest
package in R (Liaw and Wiener, 2002). The random forest algorithm cre-
ates one model by creating and combining numerous regression trees.
The individual trees were created similar to the CART analysis, with each
tree being constructed using a random subset of observations and indepen-
dent variables. The number of individual regression trees created by the
random forest algorithmwas set to 500 and the number of independent var-
iables randomly selected as candidate for each split in the trees was set to
17. Additionally, the minimum number of observations in each terminal
node was set to 5. Each subset was split into a training set from which the
tree is developed, and a hold-out set used to test the tree. For each tree,
the mean-squared error (MSE) was calculated from the hold-out set of
data (Breiman, 2001). The MSE was then recalculated for the individual
trees after permuting each independent variable. Variable importance
was calculated as the difference between both MSEs averaged across all

http://www.sws.uiuc.edu/atmos/statecli


Table 2
Competitive index (CI) and CI group ofweed species observed in theHerbicide Evaluation Program database. The CI of each species in soybeanwas obtained fromWeedSOFT
Decision Support System (University of Nebraska-Lincoln, P.O. Box 830915, Lincoln, NE).

Competitive index groupa Common name Scientific name Competitive index Number of observations

CI-0 bHenbit Lamium amplexicaule L. 0.5 75
Eastern black nightshade Solanum ptychanthum Dunal 0.5 28
bCommon chickweed Stellaria media (L.) Vill. 0.5 97

CI-1 bHorseweed Erigeron canadensis L. 1.0 172
Giant foxtail Setaria faveri Herm. 1.0 911
bCommon dandelion Taraxacum officinale F. H. Wigg 1.0 60
Ivyleaf morningglory Ipomea hederacea Jacq. 1.5 72
Tall morningglory Ipomea purpurea (L.) Roth 1.5 539

CI-2 Velvetleaf Abutilon theophrasti Medik 2.0 661
Common ragweed Ambrosia artemisiifolia L. 2.0 124
Pennsylvania smartweed Persicaria pensylvanicum (L.) M. Gomez 2.0 220
Smooth pigweed Amaranthus hybridus L. 2.5 114

CI-3 bPalmer amaranth Amaranthus palmeri S. Watson 3.0 59
Waterhemp Amaranthus tuberculatus (Moq.) J.D. Sauer 3.0 511
Jimsonweed Datura stramonium L. 3.0 47
Common lambsquarters Chenopodium album L. 3.5 584

CI-8 Common cocklebur Xanthium strumarium L. 8.0 141

a Species were grouped by the range of competitive indices. For example, CI-0 contains the tested species with a competitive index in soybean between 0.0 and 0.9. No
tested weed species had a competitive index ranging between 4.0 and 7.9, as such, there is no CI-4, CI-5, CI-6, or CI-7 groups.

b Species does not have a listed CI; as such, the CI of a comparable species was used.

C.A. Landau et al. Science of the Total Environment 830 (2022) 154764
trees, normalized by the standard error. Variables with higher variable im-
portance are more influential in predicting the dependent variable. The 52
independent variables used in the CART and random forest analyses are re-
ported in Table 3.

3. Results

Late-season average control of all species and season-long control of all
species were identified by the random forest analysis as the two most
Table 3
List of independent variables used in machine learning techniques. Explanation of
abbreviations: PRE, preemergence; POST, postemergence.

Variable group Variables

Early-season weed
control

Average control of all species (%)
Average control of each competitive index (CI) group (CI-0 to
CI-8)

Late-season weed
control

Average control of all species (%)
Average control of each CI group

Season-long weed
control

Average control of all species (%)
Average control of each CI group

Air temperature Season-long, daily thermal time (GDD)
Maximum temperature during early-vegetative growth,
late-vegetative growth, flowering to pod development, seed fill,
and full maturity (°C)
Average temperature during early-vegetative growth,
late-vegetative growth, flowering to pod development, seed fill,
and full maturity (°C)

Water Total precipitation during early-vegetative growth,
late-vegetative growth, flowering to pod development, seed fill,
and full maturity (mm)
Potential evapotranspiration (PET) early-vegetative growth,
late-vegetative growth, flowering to pod development, seed fill,
and full maturity (mm)
Water balance during early-vegetative growth, late-vegetative
growth, flowering to pod development, seed fill, and full maturity
(mm)
Average vapor pressure deficit (VPD) early-vegetative growth,
late-vegetative growth, flowering to pod development, seed fill,
and full maturity (kPa)

Crop management Cultivar information (i.e., name, maturity group, year of intro-
duction)
Previous crop
Planting density (plants ha−1)
Planting date
Crop injury (%)
Herbicide treatment timing (i.e., PRE, POST, PRE + POST)
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important variables for predicting soybean yield loss due to weeds
(Fig. 1). The additional selected variables included late-season control of
the CI-2 and CI-3 group weeds, soybean maturity group, soybean injury,
and VPD, average temperature, maximum temperature, and total rainfall
during seedfill. Thefinalmodel explained 75%of the variability in soybean
yield loss due to weeds.

The most parsimonious CART model constructed for soybean yield loss
due to weeds included six nodes with four of the 52 possible independent
variables; late-season average control of all species, soybean maturity
group, total rainfall during seed fill, and maximum temperature during
seed fill (Fig. 2). The model explained 60% of the variability in yield loss
due to weeds. The highest yield losses (mean = 52%) occurred when
late-season average control of all species was <51% in a maturity group
<3.6. The lowest yield loss levels (mean = 3%) occurred when late-
season average control of all species was ≥94%.

Similar to soybean yield loss, late-season average control of all species
was identified as the most important variable for predicting soybean
yield. Additionally, the yield random forest model included six important
variables identified by the yield loss random forest model: season-long av-
erage control of all species, CI-3 late-season control, and VPD, average tem-
perature, maximum temperature, and total rainfall during seed fill (Fig. 3).
The other important variables identified by the model were VPD and aver-
age temperature during early vegetative growth and total rainfall during
late vegetative growth. The random forest model explained 88% of the var-
iability in soybean yield. The most parsimonious CART model for soybean
yield explained 70% of the variability in soybean yield and included six
nodes and six of the 52 possible independent variables (Fig. 4). The vari-
ables selected by the CARTmodel were also selected in the ten most impor-
tant variables by the random forest model. The lowest yields (mean =
2068 kg ha−1) occurred when late-season average control of all species
was <88% and total rainfall during seed fill was <58 mm. The conditions
leading to the highest soybean yields (mean = 4385 kg ha−1) were late-
season average control of all species ≥88%, VPD during early vegetative
growth <0.95 kPa, maximum temperature during seed fill <30 °C, and
mean temperature during early vegetative growth ≥20 °C.

4. Discussion

Both CART and random forest models selected late-season control of all
weed species as the most important driver of soybean yield loss due to
weeds. Treatments that provided poor late-season control (<51%) had an
average yield loss of 48% (Fig. 2). Poor or no late-season weed control
has been shown to cause up to 43% yield loss in soybean (Barrentine,



Fig. 1.Random forest variable importance for predicting soybean yield loss due toweeds. Larger percent increase inmean-squared error indicates a larger contribution of that
variable for accurately predicting soybean yield loss due to weeds. Only the top ten variables from those analyzed (Table 3) are shown. Themodel explains 75% of variability
in soybean yield.
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1974; Hager et al., 2002). Additionally, results from the current study are
consistent with a recent multi-state study showing 52% and 61% potential
yield loss from uncontrolled weed species in the US and Illinois, respec-
tively (Soltani et al., 2017).

Later maturing soybean cultivars alleviated some of the yield losses
caused by poor late-season weed control. Maturity groups 3.6 or higher
had an average of 16% less yield loss compared to earlier maturity groups.
Fig. 2. Final classification and regression tree for soybean yield loss due to weed interfer
and each leaf. A total of 1092 observations obtained from trials conducted between 19
variability in soybean yield. Abbreviations: % YL, percent yield loss due to weeds; % W
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Compared to earlier maturity soybean, improved crop tolerance toweed in-
terference with later soybean maturity groups was driven by increased
competition for light (Nordby et al., 2007; Rose et al., 1984). Results
from the current study suggest using later soybean maturity groups may
be useful as part of an integrated weed management strategy to reduce
the risk of incomplete weed control in the future as climate becomes
more variable in the major soybean growing regions.
ence. Mean yield loss and the number of observations are reported under each node
92 and 2019 were used to create the final tree model. The model explains 60% of
C, percent weed control.



Fig. 3. Random forest variable importance for predicting soybean yield. Larger percent increase in mean-squared error indicates a larger contribution of that variable for
accurately predicting soybean yield. Only the top ten variables are shown from those analyzed (Table 3). The model explains 88% of variability in soybean yield.
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As hypothesized, yield loss due to weeds is driven by incomplete weed
control coupled with drought and heat stress during soybean reproduction.
Furthermore, the period of soybean seed fill was particularly vulnerable.
When the highest level of weed control was not achieved, treatments
with lower rainfall (<55 mm) during seed fill had an average 21% yield
loss compared to 9% yield loss with greater rainfall (Fig. 4). Several weed
species in US cropping systems display increased competitiveness with soy-
bean for water under drought stress conditions (Patterson, 1995). For in-
stance, waterhemp persisted under severe drought stress and showed
increased injury to soybean (Sarangi et al., 2016).
Fig. 4. Final classification and regression tree for soybean yield. Mean yield and the nu
observations obtained from trials conducted between 1992 and 2019 were used to cr
Abbreviations: % WC, percent weed control; VPD, vapor pressure deficit.

6

Furthermore, in treatments with rainfall≥55 mm, maximum tempera-
tures ≥29 °C during seed fill had on average 26% yield loss compared to
8% yield loss when maximum temperatures were moderate. A similar
trend was recently reported for maize (Zea mays L.) where warmer temper-
atures and drought conditions during silking exacerbated the yield loss
from uncontrolled or poorly controlled weeds (Landau et al., 2021b). In
the present study, the combination of heat stress, drought stress, and larger
more competitive weeds was likely the cause of the increased yield loss.
High air temperatures have been shown to increase dry matter accumula-
tion of Palmer amaranth (Amaranthus palmeri S. Wats) by up to 1600%
mber of observations are reported under each node and each leaf. A total of 1092
eate the final tree model. The model explains 70% of variability in soybean yield.
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compared to more moderate temperatures, while soybean showed a
10–20% decrease in dry matter accumulation (Wright et al., 1999). Similar
growth stimulation at higher temperatures also has been observed in
waterhemp (Guo and Al-Khatib, 2003), green foxtail (Setaria viridis L.)
(Wall, 1993), and velvetleaf (Abutilon theophrasti Medic.) (Patterson et al.,
1988). Results from the current study offer a window into how hotter,
drier conditions increase the risk of soybean yield loss from sub-optimal
weed control. Improvements to soybean weed management strategies
need to be made in order to limit the risk of yield loss from more variable
future weather.

Early vegetative growth of soybean is not immune to arid weather. Pro-
longed high VPD (≥0.95 kPa) during the early vegetative growth stages
caused an average 958 kg ha−1 reduction in yield (Fig. 4).While not as sus-
ceptible as the reproductive stages, soybean vegetative growth is affected
by drought stress and significant yield damage can occur if the stress is se-
vere (Cui et al., 2019). Decreased photosynthetic ability, leaf growth, and
shoot growth as early-season drought stress increased have been reported
in soybean (Wijewardana et al., 2019). The current study highlights the
need for adequate moisture not only during reproductive growth, but dur-
ing vegetative growth stages as well in order to maximize soybean yields.
However, as rainfall becomes more variable, and droughts become more
prevalent throughout the coming century, the risk of reduced yield caused
by drought stress will increase unless crop management practices, such as
drought-tolerant cultivars or irrigation, are adopted.

Much of the US soybean growing region is expected to have warmer
temperatures andmore variable precipitation patterns throughout the com-
ing century. The region will experience up to a 5 °C increase in average
yearly air temperature accompanied by drier summers and higher chances
for drought (Hayhoe et al., 2018; Romero-Lankao et al., 2014). These
weather changes are likely to expose soybean to heat stress and drought
stress during the reproductive growth stages. Both drought and heat stress
during flowering or seed fill cause significant soybean yield loss and can ne-
gate the expected benefits from CO2 fertilization (Cui et al., 2019; Jin et al.,
2018, 2017). These projected weather changes will also increase the
growth rate and competitiveness of many common weed species, and re-
duce the efficacy of commonly used herbicides (Guo and Al-Khatib, 2003;
Landau et al., 2021a; Patterson, 1995). Results from the current study fore-
shadow a grim future for soybean production in amore variable climate un-
less improvements to late-season weed control are made.

By analyzing a database of herbicide evaluation trials spanning 106
weather environments and > 1000 observations, this research provides
the most in-depth assessment of the combined effects of weed control,
weather variability, and management practices on soybean yield response.
The use of the machine learning techniques, CART and random forest,
allowed for the identification of the most important weather, weed control,
and crop management variables for predicting soybean yield loss due to
weeds and soybean yield, while also displaying the results in an easily inter-
pretable manner. Excellent weed control throughout the season is essential
for avoiding yield loss due to weeds; however, achieving such a high level
of weed control is becoming ever more difficult due to the increased prev-
alence of herbicide resistance. When weeds are not completely controlled,
drought and heat stress during seed fill exacerbate yield loss. Current cli-
mate predictions portend a future with hotter, drier summers throughout
much of the US soybean growing region. The development and adoption
of higher efficacyweedmanagement strategies will be essential in adapting
soybean production systems to climate change. Such systemswill likely rely
on a combination of cultural, mechanical, biological, and chemical control
strategies, perhaps including crop traits such as drought- and heat-
tolerance.
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